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Project purpose and background

A basic tenet of the behavioural ecological approach 
to anthropology is that local ecology, the density and 
distribution of resources in time and space, determine 
optimal patterns of economic exploitation of resources.  
Those optimal foraging, mobility, and grouping patterns 
then constrain all other aspects of social behaviour, 
and interact with mating patterns and social norms to 
produce the core behaviours of society.  As such, it is of 
primary importance that anthropologists develop and 
test hypotheses about how resource patterning results 
in basic human economic patterns.

The Paleoscape project was conceived of as a detailed and 
empirical attempt to reconstruct the hunter-gatherer 
system during several temporal phases in a coastal 
South African region. From the outset of the Paleoscape 
project, we have used optimal-foraging theory (OFT) as 
a theoretical base with well-established literature to 
design our agent-based modelling approach (see also 
Lake, 2000; 2001). The aim is to use this reconstruction 
to explore a large number of hypotheses related to 
human behavioural change. Pinnacle Point, Blombos 
Cave, and Klasies River Mouth are a set of South African 
coastal archaeological sites and localities well known 
for behavioural firsts for Homo sapiens; the earliest use 
of shellfish for food, heat—treatment of stone for lithic 

manufacture, and ochre for pigment at 162 ka (Marean 
et al., 2007; Brown et al., 2009), and some of the earliest 
beads at 72 ka (Henshilwood et al., 2004), among many 
others. As such, the context for these behavioural 
changes has come under close scrutiny as they relate 
to both the behavioural evolution of our species, as well 
as our expansion out of Africa into the rest of the world 
relatively shortly after this pivotal period. The context 
must be conceived broadly to encompass the climate, 
ecology, and human social behaviour. In previously 
published articles we have spelled out this broad 
research project in detail, including the significant 
progress made so far (Marean et al., 2015; Shook et al., 
2015).

The model described in this paper has a rather broad 
purpose, but is intentionally designed in a rather simple 
way. This paper will present our reasoning behind the 
development of this model, its design and current 
implementation with a particular emphasis on the core 
mechanism, and an illustration of its potential results. 
A larger treatment of the empirical data, model runs, 
and its broader implications for the archaeological 
record is currently in preparation. 

The Agent-Based Model (ABM) described below serves 
as an endpoint in the collection of a large amount 
of empirical data collected from specially designed 
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fieldwork and literature reviews (Figure 1). As such, 
the ABM must be both detailed and flexible enough to 
accommodate this.

Foraging as base ABM type

An additional purpose of this paper is to outline the 
importance of a key agent based modelling subject for 
archaeological research; that of a foraging system. A 
foraging system is the pattern of mobility and collecting 
decisions hunter—gatherer groups follow to collect 
the resources they need: food, water, shelter, stone 
and other materials for making tools, wood for fuel, 
and even ochre for pigment production. This should 
not be surprising given the importance of foraging to 
interpreting behaviour from the archaeological record. 
However, this commonality has not been explicitly 
highlighted in archaeological ABMs to our knowledge. 
We argue here that the foraging ABM is a kind of base 
ABM type that underlies questions related to hunter—
gatherers’ settlement and mobility patterns at the local 
scale, dispersal at regional and global scale, human-
environment interactions, behavioural and biological 
evolution, inter-group interaction, exchange systems, 
coping with risk from climatic and ecological change, 
among many others (see Lake, 2014 for a survey of 
published applications). Since foraging underlies all of 
these research questions, there should be a systematic 
focus on the commonalities between the agent-based 
modelling efforts related to addressing these questions. 
We will present a beginning to that effort here.

As noted above, OFT is a set of simple models offering 
a coherent framework for understanding how and why 
different foraging choices are made within a resource 
landscape.  OFT assumes foragers make choices which 
maximize a specified fitness-related currency (such 
as calories) given a known set of available resources, 
time constraints, costs, and benefits. In these cases OFT 
models help predict which resources will be collected, 
how much time should be spent collecting, how many 
species should be hunted, and so on (Stephens and 
Krebs, 1986; Winterhalder and Smith, 1981). OFT 
rigorously defines entities such as habitats, resource 
patches, and prey items which will be important for our 
modelling approach. Janssen and Hill (2014) describe 
in detail the limitations of classic OFT for modelling 
foraging systems and the advantages of using an ABM 
approach. For example, the cumulative effects of 
foraging over long—time scales is better suited to ABM 
than an algebraic OFT model, as is the effects of inter—
group interactions. The ABM framework also allows 
us to experiment with decision making algorithms 
designed to reflect different behavioural assumptions 
and to evaluate their relative effects.

Using OFT as a theoretical base has also helped to guide 
our empirical data collection efforts by determining 
what data is needed to reconstruct and evaluate a 
specific foraging system. Over the past few years, this 
has led our broader research team to a large number 
of field and literature surveys into the amount of time 
required to search, gather, and process resources, travel 

Figure 1. Computational workflow of the Paleoscape Project. Climate, vegetation, and human foraging models are connected 
using established theory to simulate past human—environment systems during several different temporal phases (reproduced 

from Shook et al., 2015, Figure 1). 
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known resource. Secondly, resources are temporally 
variable requiring agents to not only assess the current 
resource state, but also to predict when resources will 
be available before they actually are. This is particularly 
important given the dramatically different return rates 
of shellfish based on tide heights driven by lunar cycles 
(Marean, 2010, 2011, 2014; De Vynck et al., 2016a), but 
also relates to the seasonal availability of plants, and 
migratory patterns of some terrestrial mammals. 
Thirdly, foragers are social and are embedded in 
systems of cooperation and food sharing within and 
between groups (Janssen and Hill, 2014, 2016). 

Data

A fuller treatment of the data gathering efforts involved 
in the Paleoscape project is currently in preparation. 

speeds, and the caloric returns of resources in the 
study region including shellfish (De Vynck et al., 2016a), 
plants (Singles et al., 2016a;2016b; De Vynck et al., 2016b; 
2016c), and terrestrial mammals. 

How do you model a forager?

To blend OFT with the ABM, we base agent decision 
making on an algorithm designed to make optimal 
foraging decisions based on maximizing caloric returns 
within the available daily foraging time (for a similar 
approach see Lake, 2000, 2001). However, there are a 
number of complicating factors which are generally 
relevant to hunter-gather foraging systems, as well as 
to our agents’ decision making in particular. Firstly, 
resources are spatially variable requiring the agents 
to account for the net caloric return after travel to a 

Box 1. (a) Consider a small toy landscape with two terrestrial habitats (green) 
and one coastal habitat (white) with different return rates in kcal/h. (b) In a 

six hour foraging day the camp could stay put or move to the coast for a bigger 
return rate. (c) The hour lost in travel and the two hour low tide limit the 

potential advantage of this coastal trip but is still worth the move especially 
once adjacent terrestrial resources are harvested after the low tide. (d) For 

another camp at a further distance, the trip is not worth it (e) unless that camp 
is able to anticipate several days of high returns during the Spring tide.
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Here we will simply outline that we have divided up the 
study region into ecological zones and are undertaking 
a systematic survey of plant, shellfish, and terrestrial 
mammal food resources, as well as additional resources 
such as wood for fuel and raw material for tool 
making. In each case, through literature reviews and 
specifically designed in—field experiments with Khoi-
San descendants of the region, we have collected data 
on caloric return rates, and searching and processing 
times for parameterising the ABM (see table S2 and 
methodologies in De Vynck et al., 2016a; 2016b; 2016c; 
Singels et al., 2016a; 2016b). Although the current model 
uses a pre-agricultural Holocene habitat distribution 
map as a proxy for the interglacial Middle Stone Age, we 
are also running simulations of different climate states, 
and shifting ecological patterns in order to simulate 
foraging during other temporal phases (Marean et al., 
2015; Shook et al., 2015). 

The model

The ABM is programmed using the Netlogo toolkit 
(Wilensky, 1999), and its basic structure has been 
adapted from a published model based on the hunting 
patterns of Ache foragers of Paraguay (Janssen and Hill, 
2014; 2016). Like the Ache model, the ABM is made up 
of three entities, each with their own set of behaviours 
and variables: cells, camps, and foragers (see SOM for 
a full model description using the ODD+D protocol). 
The parameterisation of the model has not been copied 
from the Ache case study.

The 60,000 cells of the ABM’s gridded landscape each 
represent 1 hectare of habitat with one of 14 defined 
types. Nine are terrestrial ecological types and an 
additional four are coastal types. Each type is assigned 
an average caloric return value in kcal/hour units based 
on our empirical research into available food resources. 
For the purpose of this paper this includes just shellfish 
for coastal cells and plant resources for terrestrial cells. 
Terrestrial mammal hunting is being incorporated into 
a future iteration of the model and the data currently 
being compiled.

Mobility decisions are made at two temporal scales 
represented by the camps and the foragers. Camps 
represent the collective decision making of the foragers 
and are used for tracking food sharing and average 
returns of foragers. The camps select and move to a 
new location at the beginning of each day as a mobility 
target for the forgers who are members of that camp. 
The foragers then spend their day making many fine 
spatial and temporal scale movements to maximize 
their individual caloric returns.

 A large proportion of the model’s code and the variables 
of the three entities are dedicated to the accounting of 

foraging time spent and left per day, calories acquired 
and shared, resources available, those left, and the time 
until they are replenished (see SOM).

A much smaller part of the code is the mechanism 
through which the foragers and camps make their 
mobility decisions with the purpose of maximizing 
net caloric returns. As there are several complicating 
factors to be accounted for by this mechanism, outlined 
above, we shall start simply and build up to the full 
description of the camp’s decision making algorithm 
(see also Box 1).

Spatial variability

As noted, each cell has a value associated with its return 
rate (kcal/hour) based on the habitat type. Within a 
certain perceptual distance, camps assess the different 
return rates and are able to determine which cells 
have the largest caloric return for the available hours 
of foraging time. Since some of these cells are more 
distant than others, travel time needs to be factored 
into the mechanism. Often, foraging models will 
subtract a given amount for the caloric effort required 
to move (e.g. Lake, 2001). In our model, we focus on a 
larger factor, which is that the more distant the cell, the 
more time is spent on travel and thus lost to collecting 
resources. We therefore subtract the required travel 
time from the available foraging time in the calculation 
of net caloric return. Like the marginal value theorem 
in OFT (Winterhalder and Smith, 1981), the net caloric 
return after travel to a targeted cell must be greater 
than the caloric return of the currently occupied cell 
to justify moving.

Temporal variability

In a recent paper, De Vynck et al. (2016a) empirically 
demonstrated Marean’s (2010) hypothesis that coastal 
shellfish are a calorically valuable resource but only 
if the tides are favourable. The return rate of shellfish 
varies with two cycles, firstly a daily high-low cycle 
of ~12 hours with the highest returns lasting only 
during the two lowest hours of tide, twice per day. In 
winter only one low tide is harvestable in daylight, in 
summer a second low tide might be available during 
daylight. For simplicity, we assume that shellfish are 
only harvestable for the first two hours each day, with 
the rest of the foraging day being spent on nearby 
terrestrial resources. In a future version of the model, 
summer’s second daily low tide may be included as well.

A second cycle occurs over ~15 days where full and 
new moons create additional amplitude of tidal height 
change known as Spring tides. De Vynck et al. (2016a) 
demonstrated that high caloric returns are only 
available around these Spring tides and only for about 
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5 days out of every 15 day lunar half-cycle. The ABM 
cells are updated according to these cycles to reflect the 
currently available net return rates. Terrestrial plant 
resources will be similarly updated to reflect seasonal 
changes when the data has been fully collated (De 
Vynck et al., 2016b, 2016c; Singels et al., 2016a, 2016b). 

Temporal foresight and time discounting

We noted that travel time is subtracted from available 
foraging time to arrive at the net caloric return. This 
could reduce the attractiveness of a high return cell 
that is at considerable distance. However, the balance 
of the equation changes if more days of foraging are 
accounted for. As mentioned, the Spring tide lasts for 
~5 five days (or at least for two hours out of each of 
five days) and subtracting the travel time needs only 
to occur on the first of those days. We therefore sum 
the net caloric return over a given number of days of 
foresight. 

It is advantageous to know when the Spring tide has 
arrived, but it is even more advantageous to know 
when it will arrive. This temporal forecasting of a 
given number of days of foresight has the additional 
advantage of allowing foragers to arrive as the Spring 
tide, or other high value resources, becomes available 
rather than beginning to travel towards it when 
it arrives and missing the first day or two of high 
returns. Foragers do not need to be in visual range of 
the coast to forecast the arrival of the Spring tide. One 
simple method they may use is to judge by the cycle 
of lunar phases, another is a more complex calculation 
involving converting solar days to lunar days. However, 
the method used is less important than noting that it is 
possible from far inland.

The final aspect to temporal forecasting to be included is 
that calories today are comparatively worth more than 
the same number of calories in the future. This concept, 
known as time discounting, has been documented in 
economic contexts (Rogers, 1994) as well as in several 
ethnographic contexts (Kirby et al., 2002; Rosati et al., 
2007; Salali and Migliano, 2015). Several equations exist 
for calculating the present value of future resources, but 
the hyperbolic equation (Eq. 1) has been demonstrated 
to most closely match experimental data (Kirby et al., 
2002). The discount rate k, that is how steep is the fall-
off of value with time, varies experimentally, but tends 
to range between 0.01 and 0.25. Thus rather than simply 
summing the resources over several days of foresight, 
we calculate the present value of future calories 
according to Eq. 1 before summing them. The primary 
effect of time discounting in our foraging system is to 
prevent arriving several days before a resource actually 
appears (e.g. arriving two days before the Spring tide). 

	  	 (1)

where V is the present value of a caloric return A after a 
delay of D (in days), and k is the discount rate parameter 
(Kirby et al., 2002).

Decision making algorithm summary

In summary, the core mechanism of the Paleoscape ABM 
is a decision making algorithm whereby camps make a 
prediction about which cell will maximize net caloric 
returns for its foragers. The algorithm accounts for 
spatial and temporal variability in resource availability 
and is able to weigh the spatial and temporal distance 
against return rates to make the optimal foraging 
decision for the group. The foragers, since the temporal 
scale of their decisions is shorter (i.e. fractions of hours) 
and their spatial range smaller (moving between one 
hectare cells and perceiving only a small radius around 
their current location), use a simplified algorithm 
without temporal foresight and time discounting. The 
only temporal variability applied by foragers is the 
above mentioned limitation of only being able to forage 
for shellfish during the first two hours of their day.

The above series of factors to be incorporated into 
a decision making algorithm makes what seems like 
a very simple task, picking the cell with the highest 
return, much more complicated. However, by basing 
our approach on OFT and rolling it into one simple core 
mechanism, our model attempts to avoid many of the 
pitfalls of an overly complex and un-analysable model. 

Runs and model dynamics

Reporting our analysis of the South African Middle 
Stone Age foraging system is not the primary 
purpose of this paper, but a few examples will serve 
to illustrate the functioning of the model, its decision 
making algorithm, and its potential for addressing 
archaeological research questions. It is important to 
note that the parameterisation of the model (Table S1), 
and thus all the conclusions below as well, is preliminary 
as empirical field studies are still underway. Another 
paper is in preparation that will more fully discuss 
parameterisation and results of a broader range of 
model runs.

One of the simplest research questions we have 
amounts to a detailed account of the carrying capacity. 
What is the largest viable population size of the South 
African Cape Floristic Region (CFR) during MIS 5e? This 
requires not just accounting for consumable resources, 
but their spatial and temporal distribution, and their 
sustainability as resources over repeated years of 
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foraging. By conducting runs of the ABM with different 
population sizes (Figure 2), we can evaluate the long-
term viability of different sized populations and the 
make-up of their diet. To account for stochasticity, we 
completed five replicate runs of each population size.

It is unsurprising that the average caloric intake of 
foragers declines with increased population size. 
However, it is of interest that the proportion of the 
diet coming from shellfish tends to increase as the 
population size increases. This suggests that marine 
resources could be an important fall—back food either 
when the population is pushing against the limits of 
the carrying capacity of the plant resource base, as has 
been suggested during the Late Stone Age (Marean, 
2014), or during short—term decreases in plant food 
availability (not modelled at present). Marean (2015) 
has argued that marine resources are a dense and 
predictable resource. We have shown here that they 
are also more temporally, if not spatially, abundant 
since they are replenished on each spring tide (every 15 
days), whereas once plant resources are depleted from a 
given patch they won’t regrow until the following year.

We then repeated the above runs of population 
size variation but with the ability to predict when 
resources will become available over a period of 5 days 
(particularly shellfish availability based on tidal cycles). 

From Figure 3 we can see that increasing temporal 
foresight has led to an increase in the proportion of the 
diet coming from shellfish. For the larger population 
sizes, when plant resources are becoming depleted 
across the whole landscape, temporal foresight has also 

increased the average calorie intake of the population. 
Beyond just demonstrating that the temporal foresight 
part of our algorithm works as intended, this may show 
a tangible caloric benefit of the cognitive capacity 
previously suggested by Marean (2015). 

Discussion

In this paper we have developed an agent-based model 
of the foraging system of Middle Stone Age coastal 
South Africa near the archaeological sites of Pinnacle 
Point, Blombos Cave, and Klasies River Mouth. The ABM 
is designed around a decision making algorithm based 
on optimal foraging theory principles and ethnographic 
observations. The design allows the model to be both 
rigorously empirically grounded in a large amount of 
field data specially collected as inputs to the model, 
and simple enough to be clearly analysable. The core 
mechanism of our model is both complex enough to 
capture the multiple factors involved in optimally 
selecting sub-hourly foraging decisions within a 
spatially and temporally heterogeneous resource 
landscape and flexible enough to be applied to multiple 
archaeological or ethnographic case studies. 

The model outputs have been designed to facilitate 
comparisons to the published faunal records by 
allowing comparison between simulated and observed 
archaeological records of frequency of specific shellfish 
and mammal species.

We also have emphasised the importance of appropriate 
theory to ground the bottom-up design of ABMs built 
to test archaeological research questions. While levels 

Figure 3. As foragers use temporal foresight to anticipate 
temporally variable resources like shellfish, they increase the 

proportion of marine resources in their diet. In these runs, 
temporal discounting was calculated using k = 0.1.

Figure 2. As the population size increases, the average caloric 
intake of foragers decreases and the proportion of their diet 

coming from shellfish increases. Foragers are modelled to 
collect more calories than they personally require (limit set 

to 5000 kcal/day in these runs) to share with others. 
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of abstraction are required for any modelling (or 
explanatory) endeavour, some ABMs have not been as 
rigorously based in theory as they might have been. OFT 
can provide this basis not just to ABMs with foraging 
related research questions, but also those focused on 
the downstream effects of foraging related mobility 
including: dispersal, population dynamics, inter-group 
interaction, territoriality, and human-environment 
interactions. Using this approach has multiple benefits 
including better comparability among different ABMs, 
a more systematic basis for the evaluation of model 
code and results, and comparability to related research 
in ethnography and ecology. 

The decision making algorithm presented here will 
become more complex as other resources desired 
by hunter—gatherers are added, such as terrestrial 
mammal hunting, wood for fuel, raw materials for 
making tools, fresh water, and ochre for pigment. The 
present algorithm has established a common currency 
of calories as a way of making different food resources 
directly comparable. This approach presents some 
limitations given some other resources, as well as the 
physiological requirements for certain proportions 
of macro-nutrients, are not available in every food 
resource. Future iterations of the model will address 
this limitation using established theory from OFT (Hill, 
1988). 

Although not an initially articulated goal, it is worth 
noting that the use of this ABM approach within the 
larger South African Paleoscape research program 
has led to several new insights and lines of research, 
as well as novel published work (De Vynck et al., 2016a; 
2016b; 2016c; Singels et al., 2016a; 2016b). For example, 
the combination of an OFT—based approach and ABM 
development has helped to redesign plant and shellfish 
sampling protocols. Initially, sampling was focused on 
the caloric return rates of different resources. However, 
ABM development has pointed towards the importance 
of other variables such as walking speed, search times 
per habitat, and area observed per linear transect.

Rather than being a separate research project, ABM 
development has been integrated into the broader 
research goals of the project. In synthesising works, 
Premo (2010) and Lake (2010, 2014) have classified 
archaeological ABMs by two very distinct goals; 
hypothesis testing and hypothesis generating (a third 

was for developing quantitative methods but is not 
relevant here). Here we have been striving towards 
both goals, but by using a bottom—up approach based 
in OFT, we are avoiding problems of circular reasoning. 
The Paleoscape model can both help to test explicit 
hypotheses derived from archaeological inference, 
and help to generate new insights and hypotheses to 
be addressed using archaeological data by observing 
unexpected or emergent model dynamics. 

Conclusion

Janssen and Hill (2014, 2016) demonstrated that an 
ABM approach that is carefully grounded in optimal 
foraging theory can closely replicate ethnographically 
observed foraging returns of a group of hunters. They 
also demonstrated that social aspects, like the size of 
cooperative hunting groups were partly the result 
of optimizing caloric returns while minimizing risk 
through food sharing. 

In this paper we demonstrate that this approach can 
also be fruitfully applied to the past where direct 
ethnographic observation is not possible. Here we 
describe the decision making algorithm and broad 
design principles of our model. We present some 
of the possible model outputs such as the expected 
proportions of different food resources, effects of 
changing population size, and the effect of future 
planning on foraging returns. Future work will 
greatly expand the range of questions to be explored, 
including questions related to systems of food sharing, 
formal tests of hypotheses related to Middle and Late 
Stone Age foraging behaviour, direct comparisons 
to archaeological assemblage change over time, and 
predictions of inter—group interaction, territoriality, 
and defence.

This formalised framework for investigating past 
human behavioural hypotheses has been laid out in 
previously published work (Marean et al., 2015) and 
after several years of cooperative research, it is paying 
off. Palaeoclimate models inform paleo-vegetation 
distribution models which inform the resource-scapes 
applied to our ABM (Shook et al., 2015). Using this 
multi-level approach, each grounded in established 
data, method, and theory we plan to extensively test 
old hypotheses and generate many new ones. 
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Model description

This supplement is a description of our model following 
the Overview Design Details + Decision (ODD+D) Protocol 
initially described by Grimm et al. (2006, 2010) and later 
updated by Müller et al. (2012) to incorporate human 
decision making. 

This version of the model is used in Authors (2016) 
“An Agent-Based Approach to Weighted Decision 
Making in the Spatially and Temporally Variable South 
African Palaeoscape” in 44th Computer Applications 
and Quantitative Methods in Archaeology Conference 
(CAA2016), Oslo, Norway.

The model is an adapted version of Janssen and Hill’s 
(2014, 2016) model of the hunting system among Ache 
hunter–gatherers. Like Janssen and Hill, the current 
model is explicitly based on principles of Optimal 
Foraging Theory (for an alternative approach to 
blending OFT and ABM in a foraging model see Lake, 
2000, 2001). The principle difference is that the present 
model is designed for plant and shellfish harvesting 
rather than hunting. This leads to a cascade of 
differences in how mobility decisions are made.

Overview

Purpose

The purpose of this model is to explore the dynamics 
of a human foraging system including the exploration 
of decision making rules for camps and foragers. The 
landscape and food resources relate to the Middle Stone 
Age of coastal South Africa during an interglacial phase 
such as MIS 5e. Several specific research questions 
will be addressed with the model including maximum 
sustainable population size, role of inter–tidal foraging 
in the diet and its impact on mobility patterns, and the 
impact of future planning. In addition, the process of 
model development is closely linked to complementary 
research on the impact of climatic and ecological 
changes on past human populations. 

Entities, state variables, and scales

There are three types of entities in the model: cells and 
two types of agents. Cells each represent one hectare 
of a foraging landscape. A georeferenced raster map 
of a section of South Africa is imported with values 
representing one of 14 terrestrial and coastal habitat 
types. Each cell is assigned associated variables relating 
to the caloric return rates of harvesting, time required 

to harvest, current state of depletion, and time until 
replenishment based on its type. The total landscape 
is 60,000 hectares, with a fraction of that representing 
inaccessible ocean. 

The return rates of these coastal cells cycle between 
two values, one for regular and Neap tides which last 
for 10 days, and one for Spring tides which last 5 days. 
The spatial and temporal distribution of resource 
abundance over the landscape influences the pattern 
of mobility and the proportions of resources collected.

Like the Ache hunting model, there are two types of 
agents, namely foragers and camps. Camps may move 
at the beginning of each day but have a limited mobility 
range. Camps make mobility decisions designed to 
maximize caloric returns for the group over a given 
number of days. Foragers are individual people, each 
a member of specific camp, who have a time budget 
in hours that are available each day. Foragers make 
their own mobility and resource harvesting decisions 
designed to maximize their caloric returns during the 
time they have left in their day. Foragers’ time budgets 
are reduced by fractions of hours during harvesting 
and while walking between cells. Camp and forager 
variables are used to keep track of time left and 
kilocalories collected.

Process overview and scheduling

Each time step represents one day. At the beginning of 
the day, cells and camps are updated. A 15 day tidal cycle 
advances by one day and if in the last 5 days of this, 
return rates are updated to reflect Spring tide resource 
availability even if it had been harvested during the 
previous 10 days. Depleted terrestrial cells decrease 
their time until regrowth by one day and if at zero, 
their return rate is replenished. The camps then use a 
decision making algorithm to decide on their location 
for the end of the day. The maximum range of this move 
is 75% of a day’s walk from their previous location but 
may be a much shorter distance. If the selected cell is 
within range they will move to it, if it is beyond their 
range they will move as far as they can in the direction 
of that cell.

Foragers then begin a loop where they make mobility 
and harvesting decisions with the time they have left 
in their day. During each iteration of the loop, foragers 
in random order estimate the time required to walk 
directly to their assigned camp. If their time left is 
greater, they make a mobility decision designed to 
maximize their daily caloric return. After moving to a 

APPENDIX
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cell, they subtract their travel time. They harvest 20% 
of the resources of that cell, reflecting a linear 100 m 
transect with 10 m visible on either side, and subtract 
the time expended in harvesting that resource. We 
assume that foragers are able to observe a previous 
forager’s transect and thus, the return rate of each cell 
remains constant until it is completely depleted (Figure 
S1). If their travel time to camp is less than or equal to 
their time left, they move one cell towards their camp 
and do not harvest resources. Foragers repeat this loop 
until they run out of foraging time. As harvest times are 
different per habitat, foragers are asynchronous during 
each day. When all foragers have used up their time and 
returned to camp average caloric returns are calculated 
by each camp. 

Upon being fully harvested, terrestrial cells set a 
counter to 365 days. This counter is decreased each day 
to simulate plant regrowth and as cells reach zero, their 
resources are replenished. More detailed plant surveys 
are underway in South Africa and additional details 
regarding seasonal plant cycles or differing regrowth 
rates will be incorporated into a future model. 

Figure S1. Schematic of a forager agent systematically 
searching a single cell (solid arrow). By not overlapping 

the swaths (we assume they are able to recognize previous 
foragers’ harvesting activities) they maintain a constant 
return rate over five passes across the cell. Alternatively, 

the forager could decide after the first pass that the 
neighbouring cell has a higher return rate and move there 

(dashed arrow). That would leave the cell with the same 
return rate but 20% less harvestable time available to future 

foragers.

Design concepts

Theoretical and empirical background

The model design is based on Optimal Foraging Theory 
(OFT) and implemented according to OFT’s definitions 
of habitats, patches, and prey (Stephens and Krebs, 1986; 
Janssen and Hill, 2014, 2016). Habitats are geographical 
regions with consistent characteristics such that a 
statistically constant pattern of food resources will be 
encountered. This leads to an average expected return 
rate for individuals searching that habitat. Patches 
are smaller units of habitat with a finite number of 
resources. On the time scale relevant to daily foraging, 
patches may be depleted as their return rate relative 
to other patches drops. In our model we assume a 
systematic search per patch, which means that the 
return rate per patch remains constant until that cell’s 
resources have been completely exhausted at which 
point no other resources are available. While our 
field research has shown that certain plant resources 
do appear in concentrated clumps only a few meters 
across, at the scale of a hectare an individual forager 
has a reasonably consistent return rate given a habitat 
specific amount of searching and processing time. In 
the current implementation, there are no prey species.

While the broad framework of the model is based on 
OFT and ethnographic observations, some model details 
have been incorporated that are specific to South 
Africa. For example, water availability has not been 
included as a constraint on camp location decisions. A 
paper on this subject is in preparation, but preliminary 
data suggests that water sources are relatively well 
distributed across the landscape and therefore would 
not have been as important a constraint in most 
habitats as in some other regions (Cowling and Mars, 
personal communications). We have worked closely 
with a variety of researchers with knowledge of South 
African archaeology, ethnography, ecology, botany, and 
marine biology to ensure the relevant factors are being 
considered in the decision making framework of camps 
and foragers. 

Individual decision making

Camps and foragers make similar decisions designed 
to maximize their caloric return given their available 
time. In each case, the agent assesses individual patches 
with the assumption that its neighbouring patches will 
be similar. That is, the return rate of a cell is multiplied 
by up to several days of foraging time even though 
that patch may be fully exploited in a fraction of that 
time. This is a reasonable, though not strictly accurate, 
heuristic that we use for computational efficiency. 
This heuristic introduces some uncertainty into the 
estimated return for camps and foragers since the 
neighboring cells may not have the same return rate or 



M. Matsumoto and E. Uleberg (eds): Oceans of Data, CAA2016 Oslo

516

may be depleted. We assume that camps and foragers 
have prior experience in this landscape and thus know 
the condition of cells in the landscape. No partial 
memory aspect is included. See below for details.

Learning

Camps and foragers do not learn or adapt their decision 
making strategies in this version of the model. 

Individual sensing

In their decision making algorithm, camps use the daily 
foraging budget, distances to assessed cells, return 
rate of all cells, and whether a cell is depleted or not. 
In assessing the return rate, camps also understand 
the impact of the tidal cycles on return rates, and may 
forecast the high return Spring tides several days in 
advance. Although not explicitly modeled, camps are 
assumed to have global knowledge of current return 
rates through information exchange and experience. 

Foragers keep track of how much time they have left 
in their day, the distance to their camp and how much 
time it will take to travel there, how many kilocalories 
they have collected so far that day, and the current 
return rate of patches within a specified radius and 
coastal patches even if they are outside of the radius. 

Individual prediction

Although not explicitly modeled, camps and foragers 
are assumed to have knowledge of the tidally affected 
coastal return rates through the observation of lunar 
phases. This also allows camps to anticipate the arrival 
of the Spring tide. A future version of the model will 
incorporate data from seasonal plant phenology for 
predicting the availability of plant resources as well.

Interaction

Camp and forager interaction is indirect as their 
mobility decisions are affected by other foragers’ 
depletion of resources. However, the location of other 
foragers and camps are not factored into mobility 
decisions.

Collectives

Camps consist of a number of foragers who begin their 
day at the previous day’s camp location, and end their 
day at the new camp site. Average caloric returns are 
calculated both for individual foragers as well as for 
camps under an assumption of food sharing. Foragers 
are assigned a camp on initialization of the model and 
do not change camps.

Heterogeneity (agents)

Agents are not heterogeneous in their state variables or 
processes. All agents use the same decision algorithm.

Stochasticity

The order in which camps move, and foragers move and 
forage, is randomized. Since each forager is indirectly 
affected by the distribution of available resources, there 
is a minimal impact of this randomization. In certain 
rare circumstances, a forager is not able to move to or 
towards the cell they determine to have the highest 
net return due to an uninhabitable cell being in the 
way (such as an ocean). In these cases, foragers move 
to a randomly selected cell in their immediate 8-cell 
neighbourhood to help them continue moving.

Observation

Output variables will vary based on the specific 
research question being evaluated. The model accounts 
for time spent and calories collected per forager, per 
camp, and per cell. These may then be aggregated into 
average caloric returns, days without food, and ratios of 
different food types (e.g. plant vs marine, or per habitat 
type). Mobility characteristics such as frequency of 
camp movement, distance traveled per camp or forager, 
and time spent in proximity to the coast may also be 
measured.

Details

Implementation details

The model is implemented in Netlogo 5.3.1 and 
may be downloaded from the author’s CoMSES.net 
account1(Wren, 2016).

Initialization

During the setup procedure, variable settings are read 
from the user interface to determine which landscape 
will be used, and how many camps and foragers there 
will be. Setup assigns return rates and harvesting times 
to all cells based on their habitat type. Several other 
accounting variables are set to zero such as calories 
collected and distance traveled. Additionally, if a 
number of days of foresight are being used, a temporal 
multiplier is calculated using the hyperbolic time-
discounting formula. All terrestrial cells are set to be 
full of resources which results in the first year of the 
simulation being more productive than subsequent 
years.

1  https://www.comses.net/codebases/5356/releases/1.0.0/
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Input data

Habitat data

The habitat map consists of two data sources. Vector 
GIS layers of terrestrial habitats were taken from a 
digital appendix to Mucina and Rutherford (2006) and 
converted into raster format at one hectare resolution. 
This pre-agricultural Holocene distribution is used as 
a proxy for the interglacial Middle Stone Age. Climate 
and vegetation simulations are underway to model 
habitats for other climate phases.

The coastline of the study region were walked in order 
to sample underlying geology. De Vynck et al. (2016a) 
found that shellfish return rates varied consistently 
with underlying geology and used this as the basis for 
differentiating returns rates among other variables. We 
used GPS data from this coastline survey and combined 
it with the terrestrial data to create a raster model of all 
habitats at 1 hectare resolution divided into 14 distinct 
habitat types. 

Details of field experiments in coastal shellfish foraging 
are documented in De Vynck et al. (2016a), and in 
plant foraging in De Vynck et al. (2016b, 2016c) with 
some additional caloric data from Singels et al. (2016a, 
2016b). Note that the values in the table are estimated 
given currently available data, but that more rigorous 
estimates are underway.

Parameter values

Other parameter values are either estimated from 
ethnographic sources or are actively being derived 

from fieldwork in South Africa. For example, walking 
speeds through different habitats are being recorded 
during the process of plant surveying. The amount of 
harvesting time available to foragers is estimated from 
ethnographic sources including Hill’s work with Ache 
foragers of Paraguay (Janssen and Hill, 2014, 2016) 
and this is consistent with Hadza foragers in nearby 
Tanzania (Hawkes et al., 1997). One exception to these 
two sources is the camp mobility distance which is 
calculated as a percentage of a day’s walk (Eq. S3). 

Submodels

Here we discuss the details of the forager and camp 
mobility decisions, the tidal cycle, and including our 
implementation of forecasting return rates over several 
days.

Camp decision algorithm 

Camps assess all cells then select the cell which has the 
maximum net caloric return determined by Eq. S1. If 
the cell is a coastal cell, an adjustment is made as the 
return rate is different for the two hours of lowest tide 
at the beginning of the day versus the remaining hours. 
In this case, the first two hours (minus travel time) are 
multiplied by the low tide return rate, followed by the 
remaining hours multiplied by a randomly selected 
adjacent terrestrial cell (which are generally higher 
than the high tide return rate). 

Available time may also be multiplied over a specified 
number of days of foresight to reflect future planning. 
In these cases, the caloric returns of future days are 
discounted according to a hyperbolic time discounting 

Habitat ID Habitat Name Return rate 
(kcal/hr)

Harvest time 
(hours/ha)

  1 Freshwater wetlands 2000 17.9
  2 Alluvial vegetation 1160 13.4
  3 Strandveld 1200 1.17
  4 Saline vegetation 0 0.83
  5 Renosterveld 100 0.67
  6 Sand Fynbos 1020 0.72
  8 Albany Thicket 100 0.65
  9 Limestone Fynbos 470 0.70
10 Aeolianite 1450(l)/250(h) 1.5
11 Sandy beach 150(l)/250(h) 1.5
12 TMS Boulders 1100(l)/250(h) 1.5
13 TMS Rocky Headlands 1100(l)/250(h) 1.5
14 TMS Wave Cut Platforms 1100(l)/250(h) 1.5

Table S1. Return rates and harvest times per habitat type. Habitat IDs 10 or more are coastal habitats 
which have different return rates for the lowest (l) two hours of tide vs. the rest of the day (h).
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Figure S2. Screenshot of the Netlogo raster landscape where habitats are colour scaled according 
to their caloric return rates (lighter shades = higher returns). This view is during a neap tide when 

coastal returns rates are low (black). 

Parameter Description Default value Value range
nragents Number of foragers per camp 7 1-30
nrcamps Number of camps 3 1-30

Walk-speed (km/hr) Speed foragers will walk when 
not harvesting resources 2 1-5

Camp-mobility Maximum distance a camp 
may travel per day Eq. S3 n/a

Vision-forager (cells)
Distance in hectare cells that 
a forager sees when making a 
mobility choice

10 5-75

Vision-camp (cells)

Distance in cells that a camp 
sees when making a mobility 
choice (if global-knowledge 
is off)

50 1-50

Global-knowledge?

Switch to determine if camps 
have knowledge of all cells, or 
only ones within the vision-
camp radius

True True/False

Map-zone
Selects the full region or 
different sub-zones of the 
study area

z2 (Pinnacle Point) z1 (Vleesbaai), z2, or full

Max-kcal-collect (kcal)
Maximum number of 
resources a forager will collect 
in a day

5000 1000-5000

Days-of-foresight Number of days camps will 
forecast return rates over 1 1-5

Discount-rate
k in Eq. S2. Controls the 
steepness of the fall-off in 
value with days of foresight

0.1 0.01, 0.1, 0.25

Table S2. Default values and ranges for other parameters used in the model.
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formula (Eq. S2). The discount rate parameter (k) 
determines the fall—off rate of value with number of 
days in the future.

Net caloric return = ((discounted_return) * 
     hours_per_day – (distance / camp_mobility * 
     hours_per_day * current_return_rate)

where camp_mobility is defined by Eq. S3 and discounted_
return represents the summed returns over a defined 
number of days of foresight (df) 

where A is the caloric return after a delay of D (in days), 
and k is the discount rate parameter and

camp_moblility = daily_time_budget * walk_speed * 10 * 0.75

which assumes that the maximum distance the camp 
can move in one day is 75% of a day’s constant walking.

Forager decision algorithm 

Like camps, foragers assess cells (within a visual range) 
and select the cell with the maximum net caloric 
return (Eq. S4). The algorithm similarly subtracts travel 
time and adjusts for the low and high tides. The only 
difference is that foragers’ available time is based on 
how much time they have left in their day and no future 
days are accounted for.

Net_caloric_return = (current_return_rate * time_left) – 
        (distance * time_walk_cell)

where time_walk_cell is the time in hours needed to walk 
100 m as calculated from the walk_speed.

Lunar tidal cycle and forecasting

The ~15 day lunar cycle has a dramatic effect on the 
return rates of inter-tidal shellfish availability such 
that only around the Spring tides, are foragers able 
to get a sufficiently high caloric return to justify the 
risk of acquiring the resource. De Vynck et al. (2016a) 
demonstrated that under the best combination of 
conditions return rates could exceed 3000 kcal/hr. 
However, waves along this coastline can be powerful 
and could sweep foragers off slippery rocks into the 
ocean making the lower return rates during non-
Spring tides much less attractive. Our intertidal 
foraging experiments during different parts of the 
lunar cycle and under a variety of weather and forager 
characteristics have led us to determine that only 5 
days out of each 15 day cycle have high return rates, 
with the other 10 being much lower. 

(S1)

(S2)

(S3)

(S4)

A tidal—cycle procedure updates the return rates of 
coastal cells at the beginning of each model day. If a 
coastal cell is fully depleted during a non—Spring day, 
it will be replenished to the full return rate on the first 
Spring tide day to reflect foraging lower in the inter-
tidal zone. If a cell is fully depleted during a Spring tide 
day, that cell will not be replenished until the beginning 
of the next Spring tide (i.e. will remain at zero return 
rate during the 10 days of non-Spring tides). Although 
this replenishment rate may seem surprising, our 
fieldwork has demonstrated that inter-tidal return 
rates are sustainable at this rate (De Vynck, personal 
communication).

To allow for forecasting return rates over a number 
of days of foresight, a list of return rates over the 15 
day cycle is first established based on whether or not 
the cell is currently depleted. The position in the list 
is determined by where on the tidal cycle the current 
day rests, and then a sublist of based on the number 
of days of foresight under consideration is extracted. 
The discounted return formula (eq. S1) is then applied 
but using the different return rates for Spring tides and 
non-Spring tides instead of a fixed return rate. 
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