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ABSTRACT 

Network-theoretic tools contribute to understanding real-world system dynamics, e.g., in 

wildlife conservation, epidemics, and power outages. Network visualization helps 

illustrate structural heterogeneity; however, details about heterogeneity are lost when 

summarizing networks with a single mean-style measure. Researchers have indicated that 

a hierarchical system composed of multiple metrics may be a more useful determinant of 

structure, but a formal method for grouping metrics is still lacking. We develop a 

hierarchy using the statistical concept of moments and systematically test the hypothesis 

that this system of metrics is sufficient to explain the variation in processes that 

take place on networks, using an ecological systems example. Results indicate that the 

moments approach outperforms single summary metrics and accounts for a majority of 

the variation in process outcomes. The hierarchical measurement scheme is helpful for 

indicating when additional structural information is needed to describe system process 

outcomes.  
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INTRODUCTION 

Network theory is ubiquitous across the applied sciences (Boccaletti et al. 2006; 

Barthélemy 2011; Blonder et al 2012). Networks are appealing because they provide 

clear visualizations of interlinked systems, and networks preserve heterogeneities and 

local information. The motivating hypothesis implicit in network analysis is that by 

understanding the underlying structure of linkages, researchers gain predictive power 

about processes taking place on networks, e.g., the dispersal and persistence of organisms 

(Urban et al. 2009), infectious disease dynamics (May 2006), neuron communication 

(Laughlin & Sejnowski 2003), and the diffusion of ideas (Watts 2002). Networks are 

often described using summary statistics such as mean degree, mean shortest path, and 

mean clustering coefficient (Estrada & Bodin 2008). Summary statistics give an overview 

of the network linkages, but the relationship between summary statistics and processes is 

unclear ex ante. Furthermore, details about heterogeneity vanish when summarizing 

networks with a single mean-style metric. A hierarchical system composed of multiple 

metrics could aid research in the analysis of network structures, but a formal method for 

grouping network metrics is lacking (Estrada & Bodin 2008). We fill this gap in the 

literature and develop a hierarchy of network metrics and systematically test the 

hypothesis that simple metrics suffice to explain the variation in processes playing out on 

networks. The nested hierarchy of metrics is motivated by the statistical concept of 

moments, where a set of numerical features are systematically calculated and used to 

describe the structure of a distribution—or, in the case of a network, a set of connections 

among nodes—in increasing cumulative detail. 
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Network science is awash with approaches for measuring networks. Barrat et al. 

(2004) use the mean clustering coefficient, a measure of local cohesion defined by node 

degree and edge weights, to study the effects of topology and node interaction strength in 

a scientific collaboration network and the worldwide air-transportation network. Liu et al. 

(2013) use global efficiency, the inverse of the harmonic mean of the total number of 

pairwise shortest paths, to parse the effects of Alzheimer’s disease on human brain 

networks. Rayfield, Fortin, & Fall (2011) highlight the popularity of summary indices in 

ecology, asserting that the number of publications using network theory to quantify 

habitat networks has grown tenfold over the past three decades. Many established metrics 

for measuring network connectivity are strongly correlated (Baggio et al. 2011), but a 

clear hierarchy is lacking.  

The spectral radius of a matrix of edge weights is a fundamental measure in the 

analysis of social, biological, and infrastructure networks (van Mieghem 2011). The 

spectral radius faces the same limitations as any other single metric because it 

summarizes global network structure. However, derivation of the spectral radius also 

yields the eigenvector centrality, which normalizes the information on all the linkages in 

a network. Though it preserves a great deal of local information, a drawback of 

eigenvector centrality is that it does not provide a simple summary statistic. We use 

spectral radius and eigenvector centrality, collectively known as eigenmetrics, to 

demonstrate a hierarchical approach to measuring networks. Specifically, we apply the 

concept of moments by treating the eigenvector centrality as a distribution of node 

connectivity scores. Different moments (e.g. mean, variance, skewness) of the resulting 

distribution highlight different topological properties of networks; the interplay among 
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these network “moments” is useful for describing, and potentially predicting, processes 

occurring on networks. 

In this paper we present a general hierarchical approach to evaluate the impact of 

network structure on outcomes. First, we outline the theoretical underpinnings of the 

approach. Then, we demonstrate the method by applying it to the study of prairie dog 

metapopulation dynamics. Prairie dog population growth is largely driven by variable, 

individual dispersal to spatially distinct prairie towns, so a simple mean field model may 

fail to capture important local information (Durrett & Levin 1994). We use an agent-

based modeling approach to capture such dynamics over a network of prairie dog towns. 

Agent-based models (ABMs) are widely used in relevant studies on individual behavior, 

spatial population dynamics and conservation (Grimm & Railsback 2005; West et al. 

2011; Sibly et al. 2013; Schoon et al. 2014). Our results demonstrate the potential for the 

hierarchical approach to be a standard method for grouping networks and parsing 

outcomes, but more work needs to be done to assess the approach on a broader set of 

applications. 

 

MATERIALS AND METHODS 

Measuring a network by moments  

Consider a network G with N nodes, where each pair of nodes is connected by a weighted 

edge that represents the relative ease of movement or information spread through the 

network, with lower weights leading to less resistance on the network and easier 

movement. G can be expressed as an N×N adjacency matrix, denoted AG, where the edge 

weights between the N nodes of G make up the elements of AG (figure 1). AG is always a    
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Figure 1. (Left) A weighted 4-node network denoted !. The weights, denoted numerically 
and by edge width, act as facilitators/inhibitors of movement along some dispersal 
corridor between nodes. (Right) The corresponding adjacency matrix "# .  
 

zero-diagonal matrix, as information faces no resistance to stay at a node. In an 

ecological context landscape networks and metapopulation models account for changes 

within a node through local birth, mortality, and predation events (Hanski & Gilpin 

1997). Edge direction can play a substantial role on network dynamics especially when 

dealing with issues of asymmetry (e.g. uphill/downhill transportation, unreciprocated 

contact, etc.). We develop the hierarchical framework in the context of bidirectional 

networks, which are common in network science (Urban & Keitt 2001; Boit et al. 2012), 

but it can be generalized to directional networks by modeling inflows and outflows as 

separate edges.   

The spectral radius, !G, is the dominant eigenvalue of AG and measures the overall 

traversability or mean distance across a network (Jacobi & Jonsson 2011). A network 

with low spectral radius is less resistant and highly connected. An increase in the spectral 

radius indicates a decrease in connectivity. Spectral radius is a mean measure, so 

information is lost when it is used to summarize network characteristics. This may be 

acceptable for some analysis, but unacceptable for others. For a network with a given 

number of nodes and weighted edges, there is an infinite set of network configurations 

for any spectral radius, and these different configurations can lead to different process 

A

C! D!

3!

1! 4!

5!

2!

3!

B A  B   C   D!
A!
B!
C!
D!

 0   3   3    1!
 3   0   4    5!
 3   4   0    2!
 1   5   2    0!

A

C! D!

3!

1! 4!

5!

2!

3!

B A  B   C   D!
A!
B!
C!
D!

A  B   C   DA  B   C   DA  B   C   D
 0   3   3    1! 0   3   3    1 0   3   3    1
 3   0   4    5!
 3   4   0    2! 3   4   0    2 3   4   0    2 3   4   0    2
 1   5   2    0!



	   7	  

outcomes. This problem is not unique to spectral radius. For example, many different 

disease outcomes are possible on networks with the same mean degree (May 2006). 

The adjacency matrix can also be used to recover the eigenvector centrality (EC) 

of G, which describes the importance of an individual node within a network. The EC is 

the N×1 eigenvector (𝑣#) associated with the spectral radius whose elements are rescaled 

so the Euclidean norm of 𝑣#  is 1. The ith component of the EC ranks the importance of 

the ith node as donor and recipient of information within the network and describes its 

contribution to network connectivity (Urban et al. 2009). A node with a low EC score is 

highly connected relative to other nodes in the network. So the EC provides a value for 

each node, but this does not help summarize the network. To summarize the EC, we treat 

the elements of an N-dimensional EC as N data points and use the statistical moments of 

the corresponding empirical distribution. However, we discard the mean, the first 

moment, because there is a one-to-one relationship between EC mean and EC variance, 

the second moment (SI Text S1). 

Variance measures the spread in a dataset. In the network context, EC variance 

(𝑣𝑎𝑟(𝑣#)) measures the spread in node contribution across the network and provides a 

measure of heterogeneity among nodes. Zero EC variance implies that all nodes 

contribute equally to global connectivity (figure 2A). Networks with nonzero EC 

variance contain at least two nodes that contribute unequally (figure 2B).  

Skewness, the third moment, indicates whether deviations from the mean of a 

dataset are systematically positive or negative and measures the level of asymmetry in 

data. We normalize the deviations with variance when calculating skewness. Datasets 

with negative skew contain a larger proportion of points exceeding the mean. EC    



)!

Figure 2. Two 6-node networks with the same spectral radius ()# *+80km) but different 
EC variance. (A) Network with zero EC variance. (B) Network with nonzero EC variance 
($%& $# * ,-,./). Inset A and B contain the frequency distribution of EC scores for 
nodes in networks (A) and (B) respectively. Nodes 1 and 4 in Network (B) are more 
connected than other nodes hence node contribution is not homogeneous. 
  

skewness (0123'$#() captures the net ratio of relatively strong to weak contributors. 

Node i of network G is a relatively strong (weak) contributor if its corresponding EC 

score ($4 5 $#) is less (greater) than the EC mean. Networks with negative EC skewness 

possess a larger proportion of weak contributors (figure 3A), zero EC skewness reflects a 

one-to-one ratio of weak to strong contributors and structures with positive EC skewness   



*!

Figure 3. Two 6-node networks with the same spectral radius ()# *+65km) and EC 
variance ($%& $# * ,-,,6/) but different EC skewness. (A) Network with negative EC 
skewness (0123 $# * 78-9:). (B) Network with positive EC skewness (0123 $# *
8-,6/). Node 3 in Network (A) is the only strong contributor on the landscape. In 
contrast, nodes 1-4 in Network (B) are strong contributors. 
  

have a higher proportion of strong contributors (figure 3B). Our approach of using EC 

moments could be extended to higher order moments, but it is hard to produce clear 

interpretable meaning for statistical moments past the third (Casella & Berger 2002). 
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Connecting eigenmetrics with other popular network metrics  

Spectral radius is positively correlated with the mean strength and the mean clustering 

coefficient of a network. We use a rescaling argument to derive the mathematical 

relationship between spectral radius and mean strength and then relate mean strength to 

mean clustering coefficient by a constant factor; the latter exercise implies a connection 

between spectral radius and mean clustering coefficient via transitivity (see SI Text S2 for 

derivations). EC variance is closely related to common metrics that are not highly related 

to spectral radius, e.g. mean shortest path length, global efficiency, and local efficiency. 

This supports the idea that statistical moments avoid redundancy and are useful for 

organizing information from a large set of available summary indices. We show that 

mean shortest path length characterizes a strong lower bound for EC variance and then 

use a similar transitivity argument to link global and local efficiency with EC variance (SI 

Text S2). Figure 4 summarizes the mathematical connections among the metrics 

discussed above. 

 

Model design  

A common use of network analysis is the measurement of habitat connectivity for species 

conservation (Urban & Keitt 2001; Dixon et al. 2006). In the absence of extensive data 

on the ecology of species and interactions with the landscape, model simulation is a 

useful tool for analyzing the ecological implications of landscape structure (Urban et al. 

2009; Moilanen 2011; Rebaudo et al. 2013). We use a model of animal movement on a 

physical landscape to limit the variability of network structure and illustrate our 
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hierarchical approach. In the network formulation, nodes represent habitat patches and 

edges represent corridors that facilitate individual dispersal. A desirable feature of a   

Figure 4. Relating eigenmetrics to other popular network metrics. Many of the above 
relationships result from the fact that adjacency matrices for the class of network we 
study are fully connected, zero-diagonal, nonnegative and symmetric. 3 = mean 
strength, ;<=>? = global efficiency, @'!( = mean shortest path length, ;=>A = mean local 
efficiency, B = mean clustering coefficient.  

general hierarchical approach is that it is robust to multiple processes. Therefore, we 

consider outcome variation in two ecological processes: spread and survival. Spread 
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potential is measured as the time needed for an initial population on one randomly chosen 

node to occupy the last uninhabited node (i.e. time to full network occupation). Survival 

is measured as time to global extinction (i.e. no individuals on any patch).  

The data are drawn from agent-based representations of single-species habitat 

networks (described in the SI). The actions of the agents are probabilistic and provide a 

scenario where the predictive power of the chosen metrics is assessable amid stochastic 

population dynamics. The ABMs are calibrated using data on prairie dogs (Cynomys 

spp.). Prairie dog metapopulations can be represented as a network of multiple 

complexes, consisting of multiple prairie dog families, with low-lying drainages, 

roadways and other landscape features serving as corridors (Roach et al. 2001). Distance 

is a dominating factor in successful prairie dog dispersal along drainages and roadways, 

supporting the assumption of symmetry (Garrett & Franklin 1988; Bevers et al. 1997; 

Holmes 2008). 

We develop an algorithm (outlined in SI Text S3) to build 6×6 adjacency matrices 

with predetermined spectral radius, EC variance, and EC skewness (in MATLAB 

R2012a). The matrices represent 6 connected nodes, which is comparable to networks of 

prairie dog complexes (Antolin, Savage & Eisen 2006). An ABM of prairie dogs 

(implemented in NetLogo 5.0.1) is simulated on these constructed networks. On average 

prairie dogs disperse 4km (Bevers et al. 1997). 20km is used as the upper bound for any 

edge weight reflecting a low probability of successful dispersal (Holmes 2008). The 

minimum distance between nodes is 1km, corresponding to the minimum distance 

between prairie dog complexes (Holmes 2008). If all nodes were 1km apart, then the 

network’s spectral radius is 5km. Conversely, if all nodes where 20km apart, then the 



	   13	  

network has a spectral radius of 100km. Networks with equal weights on all edges have 

zero EC variance, resulting in an undefined EC skewness. We choose 5 spectral radii, 

spanning the spectrum of potential spectral radii in our system, to generate adjacency 

matrices. For each spectral radius we specify five EC variance measures, and then repeat 

the process with five levels of EC skewness. After accounting for networks that have an 

EC variance of 0, there are 107 networks configurations. We simulate 400 realizations 

per network configuration for each ecological process.    

 

Local dynamics  

The ABM birth, death, and dispersal events are stochastic. Prairie dogs exhibit density-

dependent growth (Hoogland et al. 1988). In each time-step, a prairie dog on node i 

produces fx offspring with probability, 1 - exp[-r(1 - Dx,i)]; r is the intrinsic growth rate of 

prairie dogs. Dx,i denotes prairie dog density on node i and is computed as Dx,i = xi/Ki, 

where xi is the absolute number of prairie dogs and Ki represents prairie dog carrying 

capacity for node i. Prairie dog mortality on node i occurs with probability qx. Table 1 

provides a summary of agent attributes and parameters. 

 

Dispersal dynamics  

We follow prior analytical and computational models of dispersal dynamics 

(Amarasekare 2004; Tang & Bennett 2010), and divide dispersal into the decision to 

disperse and the likelihood of successful dispersal. Intraspecific competition influences 

prairie dog dispersal (Hof et al. 2002). In the ABM, prairie dogs disperse from node 𝑖 

with density-dependent probability, 
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Symbol	   Description	   Value	  
𝑁E	   Initial number of prairie dogs on a patch 150	  

𝑟	   Prairie dog growth rate	   0.74a	  

𝑓E	   Prairie dog litter size	   3b	  

𝑞E	   Prairie dog mortality probability	   0.4a	  

𝐷I,E	   Prairie dog density threshold affecting own dispersal	   0.9c	  

𝑀E	   Average dispersal distance of prairie dogs	   2kmd	  

𝐾4 	   Prairie dog carrying capacity on patch i  (i = 1, 2) 150 

Table 1. Summary of variables and parameters used in the ABM. Approximated from: 
a(Klebanoff et al. 1991), b(Hoogland et al. 1988), c(Salau et al. 2012), d(Garrett & 
Franklin 1988). The prairie dog parameters are compiled from several different regions 
and are intended to bound the parameter space, not outline a specific case study.  
 

Dx,i / DU,x  if Dx,i < DU,x  

      1  if Dx,i  ≥ DU,x                                             [1]  

DU,x is a fixed density threshold indicator of overcrowding below which, the decision to 

disperse is random but increasingly likely with higher prairie dog density. Above DU,x, 

dispersal is certain.  

Assuming an individual animal disperses out of a node, the probability of 

successful arrival at another node is a function of distance (Hof et al. 2002) and inversely 

related to the edge weight between two nodes. A dispersing animal completes a move 

from node i to node j if,  

    Exp(Mx) < Wij                                    [2] 

The term Exp(Mx) represents a random variate drawn from the exponential distribution 

with mean Mx, which denotes the mean dispersal ability of prairie dogs. The edge weight 

Wij is the corridor distance between nodes i and j. If the animal cannot reach node j given 

the dispersal ability draw, then the dispersing animal dies. A description of the sequence 
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of agent events for each ecological process is available in SI Text S4 and archived online 

(www.openabm.org/model/4621/version/1/view). 

 

Results 

Single metrics  

Single metrics collapse the complex system into a single dimension allowing for coarse 

comparisons. Therefore, we investigate the relationship between single metrics and 

ecological scenarios in order to describe the basic trend between network structure and 

function. High spectral radius represents low traversability, which limits successful 

dispersal through the landscape (figure 5A). Spread is faster in networks with high EC 

variance because structures with greater node heterogeneity contain a strongly connected 

node that, once inhabited, facilitates spread to all nodes (figure 5B). EC skewness does 

not have a clear relationship to spread (figure 5C). We also capture similar trends using 

other common metrics; the resulting metric correlations lend support to the mathematical 

derivations in the previous section (see Table 2). 

A prominent working hypothesis in conservation is that connectivity is important 

for conservation; this is the rationale for maintaining connectivity between habitat 

patches (Hanski & Gilpin 1997). Our simulations support this claim. Networks with low 

spectral radius coincide with longer persistence times (figure 5D). Greater connectivity, 

indicated by lower spectral radius, allows greater mobility for foraging, securing refuge, 

and re-colonization. Networks with greater EC variance coincide with longer persistence 

times; in this case, the strongly connected node is the source of re-colonization and  
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Figure 5. Relating single indicators to ecological function. The columns of plots each 
pertain to the spread and survival scenario respectively. The y-axis on each plot 
represents a median time measure. The solid line in each plot represents the trend in the 
data given by LOWESS estimation (see SI Text S5 for details on the calculation). (A-B) 
Extremely slow spread times for networks with high spectral radius ()# *+100km) or low 
EC Variance ($%& $# * ,) suggest that spread regression models involving these 
metrics may better explain spread rate when plotted against log spread time. 

provides a rescue effect (figure 5E). All else equal, structures consisting of a larger 

proportion of strong contributors (i.e. high EC skewness) support longer survival periods.  

Node heterogeneity, measured by EC variance, strongly influences network 

traversability (spectral radius) in all ecological scenarios, suggesting tradeoffs among 

distinct structural properties. Understanding and measuring these multiple properties is 

likely important for conservation planning and requires multiple metrics. Ames et al. 

(2011) make a similar argument for disease dynamics on networks.  
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Spearman Correlation* 

 
𝝀𝑮 𝒂𝒗𝒈 𝒗𝑮  𝒗𝒂𝒓 𝒗𝑮  𝒔𝒌𝒆𝒘 𝒗𝑮  𝒘 𝑬𝒈𝒍𝒐𝒃 𝒍(𝑮) 𝑬𝒍𝒐𝒄 𝒄 

𝝀𝑮 1.00          
𝒂𝒗𝒈 𝒗𝑮  0.68  1.00         
𝒗𝒂𝒓 𝒗𝑮  -0.67 -0.99  1.00        
𝒔𝒌𝒆𝒘 𝒗𝑮  -0.75 -0.47  0.46 1.00       

𝒘 0.98  0.80 -0.80 -0.74 1.00      
𝑬𝒈𝒍𝒐𝒃 -0.71 -0.90  0.90 0.52 -0.82 1.00     
𝒍(𝑮) 0.72  0.92 -0.92 -0.40 0.82 -0.94 1.00    
𝑬𝒍𝒐𝒄 -0.74 -0.90   0.90 0.57 -0.84 0.99 -0.93 1.00   
𝒄 0.97  0.82  -0.82 -0.76 0.99 -0.85 0.83 -0.87 1.00 

Table 2. Correlation between eigenmetrics and popular network metrics. 
*Spearman coefficients are all significant at 5% level. 𝑎𝑣𝑔 𝑣#  = mean of the 
eigenvector centrality, 𝑤 = mean strength, 𝐸<=>? = global efficiency, 𝑙(𝐺) = mean 
shortest path length, 𝐸=>A = mean local efficiency, 𝑐 = mean clustering coefficient. 
 

Single vs. multiple metrics: A statistical test of significance  

Despite qualitative relationship between single metrics and ecological processes 

outcomes, a large degree of variation remains unexplained (figure 5). One reason is that 

single metrics do not allow multiple structural attributes to be considered simultaneously. 

We measure how much variation is explained when single metrics are combined. We use 

regression models to investigate how different combinations of spectral radius, EC 

variance, and EC skewness perform as predictors of two outcomes: median time to full 

network occupation and median time to single-species extinction.  

The greatest amount of variation in both ecological scenarios is best explained 

using all three metrics (Table 3). Even when penalizing models with extra predictors, 

models using all three metrics are still of greater quality than models using less (Table 3). 

Some metrics do not explain much variation as single predictors, but markedly influence 

fit when conditional on controlling for other metrics. For example, with an R2 of zero, EC 

skewness is unreliable as the sole predictor of spread but increases predictive power  
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Ecological process  Network metric(s) R2 △AIC Rank 

Median 
spread time 

𝜆#    0.135 143.982 5 
 𝑣𝑎𝑟(𝑣#)  0.118 155.350 6 
  𝑠𝑘𝑒𝑤(𝑣#) 0.000 230.866 7 
𝜆#  𝑣𝑎𝑟(𝑣#)  0.151 134.438 4 
𝜆#   𝑠𝑘𝑒𝑤(𝑣#) 0.309 11.200 2 

 𝑣𝑎𝑟(𝑣#) 𝑠𝑘𝑒𝑤(𝑣#) 0.162 126.968 3 
𝝀𝑮 𝒗𝒂𝒓(𝒗𝑮) 𝒔𝒌𝒆𝒘(𝒗𝑮) 0.324 0f 1 

Median 
survival time 

𝜆#    0.573 590.130 6 
 𝑣𝑎𝑟(𝑣#)  0.797 144.130 4 
  𝑠𝑘𝑒𝑤(𝑣#) 0.347 845.828 7 
𝜆#  𝑣𝑎𝑟(𝑣#)  0.839 8.222 2 
𝜆#   𝑠𝑘𝑒𝑤(𝑣#) 0.575 589.270 5 

 𝑣𝑎𝑟(𝑣#) 𝑠𝑘𝑒𝑤(𝑣#) 0.826 55.142 3 
𝝀𝑮 𝒗𝒂𝒓(𝒗𝑮) 𝒔𝒌𝒆𝒘(𝒗𝑮) 0.841 0g 1 

Table 3. Table of sample regression models using spectral radius (𝜆#), EC variance 
(𝑣𝑎𝑟(𝑣#)), and EC skewness (𝑠𝑘𝑒𝑤(𝑣#)) as predictor variables and median time values 
from the spread and survival scenarios as response variables. R2 indicates the proportion 
of variability in outcomes explainable by a given model. AIC provides a measure of 
model fit that penalizes extra predictors; preferred models have lower AIC. △AIC is a 
rescaling of original AIC values by the lowest AIC value in the group of models. 
Original AIC value: f7231.528, g8396.336 
  

when paired with the other metrics. When comparing the spread regression model of 

spectral radius and EC variance with the model using all three metrics, we find that the 

latter explains twice as much variation. In general, network metrics are relatively poor 

predictors of spread; an unexpected result because landscape structure is expected to 

directly determine dispersal but indirectly influence persistence. The R2 for the spread 

model improves to 64 percent when squared and interaction terms are included in the 

regression (see Table 4). 
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Ecological 
process	  

Network metrics	   R2	   ΔAICa	  

Spread	   𝜆#      𝑣𝑎𝑟(𝑣#)     𝑠𝑘𝑒𝑤(𝑣#)     𝜆#
^     𝜆#×𝑣𝑎𝑟(𝑣#)      

 
𝜆#×𝑠𝑘𝑒𝑤(𝑣#)	  

0.643	   -376.75	  

 
Survival	  

	  

𝜆#      𝑠𝑘𝑒𝑤(𝑣#)     𝜆#
^     𝑣𝑎𝑟(𝑣#)^     𝑠𝑘𝑒𝑤(𝑣#)^      

 
𝜆#×𝑣𝑎𝑟(𝑣#)     𝑣𝑎𝑟(𝑣#)×𝑠𝑘𝑒𝑤(𝑣#)	  

 
0.886	  

 
-188.97	  

Table 4. Best models from regression. 
aDifference in AIC between the model presented here and the best model reported in 
Table 3.  
 

Sensitivity analysis 

Parameter choice can bias results from computational models and, in this study, 

hamper general claims of statistical significance. ABMs are a boon in this regard because 

they allow for repeated scenario testing and targeted assessment of parameter effects in a 

controlled environment. We perform sensitivity analysis on the population parameters of 

the prairie dog ABM and assess whether multi-metric regression models always 

outperform single metric models. We give each default parameter value a ten percent 

increase/decrease, collect new simulation data, and document the change in R2 and AIC 

values for the regression models. A series of tables (one for each parameter perturbation) 

containing the adjusted statistical measures can be found in the supplementary material; 

we give further instructions on reading the tables in SI Text S6. For two parameter 

perturbations (increased prairie dog litter size and decreased mortality) in the survival 

scenario, extinction events became so rare in our simulation context that it was not 

feasible to compare network structures. This is because reproduction and survival on any 

one node was sufficiently high. 

Though the ranking of single and two-metric regression models change depending 

on parameter settings, we find that the model with all three metrics always provides the 
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best indicator of spread and survival. Within this subset of models, R2 values for the 

spread scenario are less sensitive to perturbation than their survival counterparts (Table 5). 

So despite an overall lower R2, the three metrics are more robust predictors of spread in a 

network. Robustness is key in the complete assessment of network metrics on different 

types of outcomes.  

 

 Perturbed value △R2 
Parameter -10% (+10%) Spread Survival 

Initial number of prairie dogs on a patch, Nx * -0.012 (-0.011) 0.001 (-0.015) 

Prairie dog growth rate, r 0.67 (0.82) -0.002 (0.011) -0.191 (-0.426) 

Prairie dog litter size, fx** 2 (4)*** 0.006 (0.043) -0.339 (NA) 

Prairie dog mortality probability, qx 0.504*** (0.616) -0.001 (-0.009) NA (-0.313) 

Prairie dog density threshold, DU,x 0.81 (0.99) -0.004 (0.002) -0.002 (-0.008) 

Average dispersal distance of prairie dogs, Mx 1.8km (2.2km) -0.035 (0.031) -0.021 (0.004) 

Carrying capacity, Ki 135 (165) 0.002 (0.004) -0.036 (-0.003) 

Table 5. This table provides the quantitative change in R2 for the 3-metric linear regression model when 
perturbing model parameters. We systematically increase/decrease each default parameter by ten percent 
then recalculate the relationship between network metrics and outcomes. Positive △R2 implies that the R2 
associated with the perturbed model is greater than the largest R2 value reported in Table 3. 
*These values are scenario-dependent. For spread, the perturbed values are 4 (6). For survival, the 
perturbed values are 135 (165). 
**These values must be nonnegative integers. 
***We are unable to observe any meaningful relationship between metrics and median survival time 
because simulations with death rate 0.504 (and lower) or litter size 4 (and higher) seldom lead to 
extinction. 
 

In the survival scenario, regression performance is highly sensitive to prairie dog 

growth rate and litter size parameters; in one experiment, the original R2 value reduced by 

a factor of 2 (Table 5). But even at the lowest R2 level, the 3-metric model remains a 

better predictor of survival than spread, which again is surprising given the presumed 

connection between network structure and dispersal. Perhaps this result is less astounding 

when one also considers the important linkage between dispersal and survival in the case 

of prairie dogs. Ultimately, tradeoffs in the accuracy and robustness of metrics are 
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realistic, unavoidable, and amplify the hardships managers face when seeking to 

understand and influence dynamics on networks. The hierarchical approach, coupled with 

a controllable model, helps quantify these tradeoffs and inform the discussion on how to 

best summarize networks. 

 

Hierarchy of metrics  

Regression and sensitivity analyses support simultaneous use of multiple metrics when 

evaluating network processes. We sort the metrics in the same order they are derived—

this is the hierarchy. The sorting helps develop a narrative on how the combined effects 

of the metrics dictate process outcomes. We highlight regions in the spread and survival 

scenario where single metrics tell an incomplete story and indicate when a single metric 

is sufficient (see Table 6 for a summary). 

 

   

                     EC Variance 
 

   
Low Intermediate High 

Spectral 
Radius 

Low 
(5-20) 

Spread Fast Fast Fast 
Survival Variesa Variesb Long 

 
Intermediate 

(35-65) 

 
Spread 

 
Variesc 

 
Fast 

 
Fast 

Survival Variesd Variese Long 
 

High 
(80-100) 

 
Spread 

 
Variesc 

 
Fast 

 
Fast 

Survival Brief Brief Brief 
Table 6. Summary of spread and survival outcomes. 
aSurvival time is highly variable, but normally long at margins of EC skewness; bSurvival 
time is generally long but decreases with higher EC skewness; cSlower spread time for 
structures with higher EC skewness; dSurvival is brief but increases with higher EC 
skewness; eSurvival is brief but increases at margins of EC skewness. 
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The key determinant of fast spread is node accessibility, and greater node 

accessibility is indicated by a combination of low spectral radius and high EC variance 

(Table 6). Spectral radius is a sufficient indicator of fast spread in networks with 

moderate to high traversability (in our example, λG ≤ 50km) due to the overall closeness 

of nodes. In networks with low traversability (λG > 50km), node heterogeneity becomes 

the deciding factor and greater EC variance indicates fast spread (figure 6B).  

We observe variation in spread outcomes for networks with low traversability (λG 

≥ 65km) and low heterogeneity (𝑣𝑎𝑟(𝑣#) ≤ 0.01); see region I (figure 6B). For such 

networks, spectral radius and EC variance are unable to fully capture all scenarios and 

EC skewness provides additional information for parsing through different spread 

outcomes. For networks with high EC skewness in region I, node accessibility is lower 

even though the proportion of strong contributors is high. This is because of an extremely 

weak contributor, which results from increasing EC skewness in region I (recall figure 

3B). As a result, dispersing agents are unlikely to reach or escape the isolated node.  

Region I is a prime example of how complex the determination of spread outcomes 

becomes when using the networks concept. The ability to illustrate and explain different 

outcomes in region I is a key advantage of the hierarchical moments approach. 

Node accessibility is also important for persistence. At the highest levels of 

spectral radius (λG ≥ 80km), all nodes are isolated and survival is brief (figure 7B); 

spectral radius is a good predictor of persistence outcomes in such structures. For 

networks with intermediate spectral radius persistence becomes a function of node 

heterogeneity; all nodes are accessible and survival time increases with increased EC 

variance (figure 7A).  



#$!

Figure 6. Grouping spread outcomes. Color denotes median time to full network 
occupation. Dark blue coincides with ‘fast’ spread time and burgundy denotes ‘slow’ 
spread. Spread outcomes corresponding to zero EC variance can only be displayed in 
panel A and not in panel B because skewness is undefined at such points. The area 
bounded by the dashed oval highlights a region where EC skewness is a strong 
determinant of spread; this bounded area is titled region I.  
 

 

 

 

Figure 7. Grouping survival outcomes. Color denotes median time to extinction. Dark 
blue coincides with ‘brief’ survival and dark red denotes ‘long’ survival. The area 
bounded by the dashed oval highlights a region where extinction time is variable and 
dependent on EC skewness; the area is titled region II.  
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Persistence outcomes are highly variable when both spectral radius and EC 

variance are low. We expect high traversability (low spectral radius) to ensure survival, 

but the relative number of strong contributor nodes, measured by EC skewness, is the 

deciding factor. On average, networks with a spectral radius of 20km and EC variance of 

0.02 induce moderately high persistence times, but if the EC skewness is zero, indicating 

an equal number of weak and strong contributor nodes, then persistence times plummet 

(see region II in figure 7A-B). Large asymmetry in node contribution strength, which 

occurs at both ends of the EC skewness spectrum, supports greater persistence times.  

Despite the influential role of net contribution strength when determining 

persistence outcomes for seemingly similar networks, the pattern in region II is not 

uniform across the tri-metric space (figure 7B). Generalizing the effects of EC skewness 

is difficult, but we find persistence time is longer at one of the extremes. These findings 

support the notion that for fixed spectral radius and EC variance, one strongly connected 

node—or the absence of a weakly connected node—may be more important for network 

cohesion than multiple moderately connected nodes. These results also suggest that there 

is strong nonlinearity with respect to how skewness interacts with spectral radius and 

variance; in this case, studying higher moments may play an important role in unpacking 

and explaining the nonlinearity. Such an extension does not contradict the conclusion that 

applying the moments concept makes network features straightforward to measure.   
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DISCUSSION AND CONCLUSION 

Network metrics and node centralities collapse the high dimensionality of networks into a 

single dimension. Therefore, no single metric can precisely describe spread or survival on 

a network. Using multiple metrics in a systematic manner helps retain structural 

information and describe different network attributes influencing a process occurring on a 

network. It is possible to negotiate tradeoffs between simple, readily interpretable metrics 

and the amount information lost through summarization by thinking systematically about 

how the information from a network is summarized. 

A systematic approach to network measurement begins at the global scale with 

the most general metric of structure (e.g. a network metric), and then categorizes based 

on individual-scale heterogeneities (e.g. node centrality scores). We recover the 

information in node centrality scores with routine formulae for statistical moments. The 

mathematical dependence between the metrics determines the range of possible network 

configurations. However, large variation in network configuration does not imply large 

variation in process outcome. High outcome variability manifests itself in specific regions 

of the metric space, which vary depending on the process considered. For models of 

spread, variability in the time until full network occupation occurs only for structures 

with large spectral radius. In this case, multi-metric analysis shows that even poorly 

traversable networks can foster quick dispersal depending on the number of strong 

contributors. For models of survival, high variability in extinction time occurs for 

structures with low spectral radius and EC variance; highly connected systems do not 

guarantee long-term persistence.  
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The interplay between grouped metrics highlights tradeoffs in structural design, 

which broadens the criteria for network selection. In general, the nature of the process 

and the layout of the edge weights determine the extent to which structural tradeoffs are 

feasible. In our ecological example, traversability is not the sole driving force behind 

long-term persistence and can be substituted by greater node heterogeneity. Structural 

tradeoffs also extend across multiple processes. We find that most networks promoting 

persistence also facilitate dispersal, but the converse is not true. Ordered multi-metric 

analyses do not provide a definitive summary on network dynamics, but help illustrate 

and understand the complexities in identifying preferred networks (e.g. structures that 

minimize invasive species spread, maximize survival, or a combination of both). 

Applying statistical moments does not create new metrics; it brings order to the large set 

of available networks metrics and facilitates combining them in a logical manner.  
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SUPPORTING INFORMATION 
 
SI Text S1: Proposition 1 
Let 𝑣#  represent the eigenvector centrality corresponding to a 𝑁-patch network (𝑁 ≥ 1) 
denoted 𝐺. Let 𝑣 and 𝑣𝑎𝑟 𝑣#  denote the mean and variance of 𝑣#  respectively. Then 
there exists a continuous function 𝑔: 𝑣 → 𝑣𝑎𝑟 𝑣# , such that 𝑔 is bijective. 
 
Proof. 

   𝑣 = 𝑣4 𝑁d
4ef                         [S1] 

 𝑣𝑎𝑟 𝑣# = f
d

𝑣4 − 𝑣 ^d
4ef                                                                               [S2] 

Expanding eqn S2 and using the identity in eqn S1 gives,   

  𝑣𝑎𝑟 𝑣# = f
d

𝑣4^ − 2𝑣4𝑣 + 𝑣^d
4ef  

                            = f
d

𝑣4^d
4ef − ^h

d
𝑣4d

4ef + 𝑣^ 

                            = f
d

𝑣4^d
4ef − 2𝑣^ + 𝑣^          

                            = f
d
( 𝑣4^)d

4ef − 𝑣^                                                                            [S3] 

Eigenvector centralities are rescaled so the corresponding Euclidean norm equals one, so  

          𝑣4^d
4ef

i = 1 = 𝑣4^d
4ef             [S4] 

Substituting eqn S4 into eqn S3 yields, 

 𝑣𝑎𝑟 𝑣# = f
d
− 𝑣^ = 𝑔(𝑣)                           [S5] 

As 𝑣 can only take on positive values, 𝑣𝑎𝑟 𝑣#  decreases monotonically with greater 
mean values; thus 𝑔 is one-to-one and surjective. eqn S5 represents a bijective mapping, 
𝑔, between the mean and variance of the eigenvector centrality.  

 
 

SI Text S2: Connecting eigenmetrics and other popular network metrics 
Assumption A1: We consider a specific class of fully connected networks with 
corresponding adjacency matrices that are zero-diagonal, nonnegative and symmetric. 
Without loss of generality, we refer to such a network as network G. 
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Proposition 2: If (A1) holds, then the spectral radius of network G is a rescaled version 
of its mean strength that accounts for EC scores.  
 
Proof. The strength of node 𝑖 in network 𝐺, indicated as 𝑤4, is calculated as the sum of 
the weights on its connecting edges, 

 
 𝑤4 = 	   𝑤4,jj                                                                                                        [S6] 
 

where 𝑤4,j is the weight of the edge connecting nodes 𝑖 and 𝑗. The mean strength of 
network 𝐺 is the mean of 𝑤4 over the 𝑁 nodes of network 𝐺, 

 
 𝑤 = lmm

d
= 	   lm,nnm

d
= 	   lm,nm,n

d
                                                                             [S7] 

 
𝐴# = 𝑤4,j  is the adjacency matrix corresponding to network 𝐺. Let 𝑣#  represent the 
eigenvector centrality corresponding to 𝐴# . Then one formula for the spectral radius,1 𝜆# , 
of 𝐴#—provided by Frobenius (Cao 1998)—is, 

 
 𝜆# = 	  

lm,nhnnm

hmm
= lm,nm,n hn

hmm
                                                                                  [S8] 

 
where 𝑣4	  𝜖	  𝑣# . Eqn S7 is an arithmetic mean strength that places equal value on each 
node, eqn S8 is a “rescaled” arithmetic mean strength that takes into account the 
centrality score of the corresponding node (we use “rescaled” but the more popular term 
is “weighted”, we do not use the latter term in this context because of conflict with its use 
to describe the connection between nodes). For a rescaling to have properties that the 
concept of rescaling generally implies, arithmetic means and “rescaled” arithmetic means 
must be positively correlated. 

 
Proposition 3: If (A1) holds, then the mean strength and mean clustering coefficient of 
Network G are related by a constant factor.  
 
Proof. The weighted clustering coefficient (Onnela et al. 2005; MATLAB Brain 
Connectivity Toolbox] of node 𝑖 is, 
 

 𝑐4 = 	  
	  lp,q	  lq,r	  lr,p

s/u
n,r

vm(vmwf)
 

 
where the weights are rescaled by the largest weight in the entire network, 𝑤x,y =
	  𝑤4j max	  (𝑤4j). 𝜂4 is the total number of neighbors belonging to node 𝑖. Since all 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 There is more than one formula for calculating the spectral radius of a network. For example, the spectral 
radius of a star graph can be calculated as 𝑤4^4 , where each 𝑤4 is a distinct edge weight in the network. 
However, such formulas are specific to networks with certain properties and do not extend to the fully 
connected graphs we consider. The formula we use fits graphs with more general properties, this is because 
the Frobenius formula is derived from the basic definition of an eigenvalue. 



	   35	  

networks with weighted edges can be considered fully connected, it must be the case that 
𝜂4 = 𝑁 − 1. Thus, 

 

 𝑐4 = 	  
	  lm,n	  ln,r	  lr,m

s/u
n,r

(dwf)(dw^)~��	  (lm,n)
 

 
Using the above equation, the mean clustering coefficient has the form, 
 

            𝑐 = 	   Amm
d
= 	  

	  �m,n	  �n,r	  �r,m
s/u

n,r
(��s)(��i)���	  (�m,n)
m

d
 

 

                           =	   	  lm,n	  ln,r	  lr,m
s/u

n,rm

d dwf dw^ ~��	  (lm,n)
 

 

                           ≤	  
�m,n	  �	  �n,r	  �	  �r,m

un,rm

d dwf dw^ ~��	  (lm,n)
       (by the arithmetic - geometric mean equality) 

 
                           =	   lm,n	  n,rm 	  �	  	   ln,r	  n,rm 	  �	  	  	   lr,mn,rm

�d dwf dw^ ~��	  (lm,n)
 

 
                           =	   lm,n	  m,nr 	  �	  	   ln,r	  n,rm 	  �	  	  	   lr,mr,mn

�d dwf dw^ ~��	  (lm,n)
 

                        
                           =	  d lr 	  �	  	  d lm 	  �	  	  	  d ln

�d dwf dw^ ~��	  (lm,n)
 = �dil

�d dwf dw^ ~��	  (lm,n)
	  = 	   dl

dwf dw^ ~��	  (lm,n)
 

 
Recall 𝑤 is the mean strength. The above derivation shows that a strong upper bound for 
the mean clustering coefficient exists as a linear function of the mean strength. 
 
Proposition 4: If (A1) holds, then the mean shortest path length of Network G 
characterizes a strong lower bound for EC variance.  
 
Proof. The mean shortest path length of network 𝐺 is written as, 

 
      𝑙 𝐺 = 	   f

d dwf
𝑑4,j4,j∈#                                                                                     [S9] 

 
where 𝑑4j is the shortest weighted path between nodes 𝑖 and 𝑗. Using an alternate formula 
for EC variance derived in SI Text S1, we write, 

  

       𝑣𝑎𝑟 𝑣# = f
d
− 𝑣^ = f

d
− hm�

m�s
d

^
 

 

                                       = f
d
− lm,nm,n hn

d��

^
               (Using eqn S8) 
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                                       = f
d
− lnn hn

d��

^
                  (Using eqn S6) 

 

                                       ≥ f
d
−

ln
i

n hn
i

n

d�� i               (Using Cauchy’s inequality) 
 

                                       = f
d
−

ln
i

n

d�� i                        (Using eqn S4 in SI Text S1) 
 

                                       ≥ f
d
− lnn

d��

^
                                                                  [S10] 

 
Latora and Marchiori (2001) assert that when nodes 𝑖 and 𝑗 are connected, the weight of 
their adjoining edge is equal to the shortest path between them, i.e. 𝑤4,j = 	  𝑑4,j. Since we 
assume each node is connected to every other node in 𝐺,  
 
 𝑤4,j = 	  𝑑4,j for all 𝑖, 𝑗 ∈ 𝐺,  
 
which further implies 𝑤jj = 	   𝑤4,j4,j = 	   𝑑4,j4,j 	  = 	   𝑑jj . So inequality S10 becomes, 

 

       𝑣𝑎𝑟 𝑣# 	  ≥ 	   f
d
− �nn

d��

^
                                                                                 [S11] 

 
Using the equation for mean shortest path length given eqn S9, rewrite inequality S11 as, 

                        

       𝑣𝑎𝑟 𝑣# 	  ≥ 	   f
d
− dwf

��
𝑙(𝐺)

^
                                                                          [S12]                          

 
Inequality S12 shows that the mean shortest path length characterizes a strong lower 
bound for EC variance.  
 
Proposition 5: If (A1) holds, then the mean shortest path length of Network G is 
approximately inversely proportional to global efficiency.  
 
Proof. Global efficiency for a network 𝐺 is written as, 

 
  𝐸<=>? = 	  

f
d dwf

f
�m,n4�j∈# 	                                                                                  [S13] 

 
where 𝑑4j is the shortest weighted path between nodes 𝑖 and 𝑗. Comparing eqns S9 and 
S13, mean shortest path length is (approximately) inversely proportional to global 
efficiency (Latora & Marchiori 2001; Fischer et al. 2014; MATLAB Brain Connectivity 
Toolbox).	  
 
Proposition 6: If (A1) holds, then the global efficiency of Network G characterizes a 
strong upper bound for local efficiency.  
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Proof. Latora and Marchiori (2001) write the equation for efficiency of a node 𝑘 as, 

 
 𝐸 𝐺� = 	   f

vr vrwf
f

��,�
�,�∈#r 	  = 	   f

(dwf) dw^
f

��,�
���∈#r                            [S14] 

 
where 𝐺� is the subnetwork of neighbors for node 𝑘 (i.e. node 𝑘 is omitted from the 
network, along with its connections). 𝜂� is the total number of nodes in subnetwork 𝐺�. 
Since we have a fully connected network, 𝜂� = 𝑁 − 1. Local efficiency of network 𝐺 is 
the average efficiency of the subnetworks,  

 
 𝐸=>A = 	  

f
d

𝐸 𝐺��∈# = 	   f
d

𝐸 𝐺�d
�ef                                                                        

 

 	  	  	  	  	  	  	  	  	  = 	   f
d

f
dwf dw^

f
��,�

�,�∈#r
d
�ef                (Using eqn S14) 

             

            	  	  	  	  	  	  	  	  	  ≤ 	   f
d

f
dwf dw^

f
��,�

�,�∈#
d
�ef                  (Since 𝐺� ⊆ 	  𝐺) 

 

             	  	  	  	  	  	  	  	  = 	   f
dw^

f
d dwf

f
��,�

�,�∈#
d
�ef  

                  
                    =	   f

dw^
𝐸<=>?d

�ef  
 
                    =	   d

dw^
𝐸<=>?                                                                                                          

 
Global efficiency characterizes a weak upper bound for local efficiency. 
 
 
SI Text S3: Pseudo code for matrix generating algorithm 
1.   Designate the structure of solution matrix, 𝑥∗.  

a.   Assign matrix dimensions (e.g. 𝑁×𝑁). 
b.   Assign lower and upper bound for matrix elements. 
c.   Assign specific spectral radius (𝜆E∗), EC variance (𝑣𝑎𝑟 𝑣E∗ ), and EC 

skewness (𝑠𝑘𝑒𝑤 𝑣E∗ ).    
 
2.   Develop constraints for the solution matrix, 𝑥∗. 

a.   Constrain 𝑥∗ to have zeros in the diagonal entries. 
b.   Constrain 𝑥∗ to be symmetric. 
c.   Constrain 𝑥∗ to be bounded below and above by values designated in (1b). 

 
3.   Generate a 𝑁×𝑁 initial matrix, 𝑥�, with random entries bounded above by maximum 

weight designated in (1b) and make note of the corresponding spectral radius, EC 
variance, and EC skewness. 
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4.   Compare each metric designated in (1c) with its counterpart derived from 𝑥�. One 

method of comparison is by taking the absolute value of the differences (e.g. 𝜆E∗ 	  −
	  𝜆E� , 𝑣𝑎𝑟 𝑣E∗ 	  − 	  𝑣𝑎𝑟 𝑣E� , 𝑠𝑘𝑒𝑤 𝑣E∗ 	  − 	  𝑠𝑘𝑒𝑤 𝑣E� ).  

 
5.   While any of the three absolute differences remain greater than some predetermined 

tolerance level, 
a.   Randomize one of the elements of 𝑥� subject to (1b). 
b.   Minimize the sum of squared differences between the metrics designated in 1c 

and their counterparts derived from 𝑥� by perturbing the elements of 𝑥� 
subject to constraints detailed in (2). Denote this perturbed version of 𝑥�, 𝑥�. 

c.   Replace the elements of 𝑥� with those of 𝑥�.  
d.   Reevaluate absolute differences as per (4). 

 
6.   Once all three absolute differences become less than the predetermined tolerance 

level, the iterative process outlined in (5) stops and the last updated version of the 
matrix 𝑥� is designated 𝑥∗. 

	  
	  
SI Text S4: Schedule of Events 
A description of the sequence of agent events for each ecological process is archived 
online (www.openabm.org). The ABM birth, death, and dispersal events are stochastic 
and occur if a randomly chosen value from the random uniform distribution on the unit 
interval ([0,1]) is less than the corresponding rate of event occurrence. We simulate 400 
realizations per network configuration for each ecological process. Each ecological 
scenario follows a similar sequence of actions briefly described below and illustrated in 
Fig. S1:  
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Figure S1. Schedule of events as coded in the agent based model 
 

1)   Landscape initialized with a habitat network (𝐺) possessing a specified spectral 
radius (𝜆#), EC variance (𝑣𝑎𝑟(𝑣#)), and EC skewness (𝑠𝑘𝑒𝑤(𝑣#)). 
 

2)   Initialization of agents 
a.   Spread – A population of 𝑁E Prairie dogs initially placed on one randomly 

chosen patch. 
b.   Survival – 𝑁E prairie dogs initially placed on each patch.  
 

3)   Internalization of local information 
a.   Spread - Each prairie dog on patch i internalizes local information 

by counting the number of agents on its patch (including itself) and 
determining the population density (i.e. 𝐷E,4). We assume agents 
do not update these values until the beginning of the next time-step 
so as to create the idea that agents actions, especially density-
dependent events, occur in some simultaneous fashion and no 
single agent receives the most current information. 

b.   Survival – Same as above. 
  

4)   Individual stochastic events 
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a.   Spread - During a time-step, prairie dog natural mortality events occur 
first. Then surviving prairie dogs may reproduce. Lastly, dispersal events 
are calculated. Dispersal mortality occurs if prey dispersal is unsuccessful 
or if intra-species competition is too great on target patch. 

b.   Survival – Same as above. 
  

5)   Stop conditions 
a.   Spread - If prairie dogs have not reached the last uninhabited patch, 

process is repeated from step 3.  
b.   Survival - If prairie dogs still exist on the landscape, process is repeated 

from step 3.  
 
 
SI Text S5: LOWESS Smoothing 
Locally weighted scatterplot smoothing (i.e. LOWESS smoothing) methods fit a low-
degree polynomial regression to a subset of the data derived from simulation. The 
LOWESS method gives higher weights to points nearby and lower weights to points 
further away from the point where the dependent variable is estimated given the 
independent variable (Cleveland 1979;	  Cleveland & Devlin 1988). The weights given to 
distance between points of the independent variable are assigned according to the 
following function: 
	  
        
 
 

        [S6] 
 
 
SI Text S6: Describing Supplementary on Sensitivity Analysis 
We use this section to help readers understand the information in the supplementary files 
titled ‘spread_sensitivity_tables.txt’ and ‘survival_sensitivity_tables.txt’.  The ‘.txt’ files 
provide results on how a ten percent increase/decrease in each default population 
parameter (see Table 1) changes the statistical metrics (e.g. R2) of a given regression 
model in the spread and survival scenario. Each ‘.txt’ file contains 14 tables, each table 
has a label above it with the name of the perturbed parameter and the corresponding 
perturbed value. The contents of each table include a list of regression models and their 
corresponding statistics. The names given to the network metrics (i.e. the independent 
variables) differ from those in the main manuscript, we translate them here; eigen – 
spectral radius, vareig – EC Variance, skeig – EC Skewness. We use log-likelihood 
values in the ‘.txt’ files and △AIC values in the main manuscript; lower △AIC values 
coincide with higher log-likelihood values. The main result is not altered by the change in 
statistical measures; the best regression models (with relatively high R2, low △AIC 
values, and high log-likelihood values) still use all three network metrics. 
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