
 
 
 
 

1. Introduction 
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______________________________________________________________ 
 
1.1 THE ISSUE 
 
Our world view on the structure of systems is changing rapidly. According to 
the traditional Newtonian paradigm, we can assume a system is in 
equilibrium, and study it in isolated parts. Scholars in the field of complexity 
adopt a paradigm of complex adaptive systems, which assumes that systems 
are emergent structures on a macro scale due to interactions between micro-
level agents who adapt themselves to their environment. Unlike the 
Newtonian paradigm, which assumes that systems have a predictable 
behavior, the behavior of complex adaptive systems cannot be predicted 
accurately. However, complex adaptive systems can provide us with insights 
under which circumstances simple local rules can lead to emergent macro-
level structures. 

Examples of complex adaptive systems are immune systems, nervous 
systems, economies and ecologies. These systems can be studied by a number 
of new computation-based modeling tools, including genetic algorithms, 
cellular automata, neural networks, multi-agent systems, and artificial life 
forms. In this volume the interactions between people and their environment 
is addressed. Both theoretical and practical examples are presented of 
developing and applying methodology of studying the management of 
complex adaptive social-ecological systems. 

Economists study the management of ecosystems in terms of harvesting 
ecosystem services from renewable resources. Substantial progress has been 
made during the last 30 years. Prior to 1970, model analysis was mainly 
static, such as the seminal work on renewable resource harvesting by Gordon 
(1954). After 1970 the trend shifted towards dynamic systems for the 
economics of renewable resources. The resulting optimization problem was 
addressed by dynamic programming, game theory and equilibrium analysis 
(Clark, 1990; Dasgupta and Heal, 1979; Mäler, 1974). Irreversibility and 
uncertainty have been addressed since the early 1970s (Arrow and Fisher, 
1974; Henry, 1974) and remain among the main focuses of environmental 
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economics (e.g. Chichilnisky, 2000).  
In mainstream environmental economics it is usual to analyse a 

representative agent who has perfect knowledge and maximize its utility of 
consumption for an infinitive time horizon. Such an approach resulted in 
interesting insights but is of limited use if systems are characterized by non-
convex dynamics, structural uncertainty, heterogeneity among agents and 
spatial heterogeneity. The question is how to analyse ecosystem management 
problems with spatial explicit non-convex dynamics influenced by multiple 
stakeholders who consume different types of ecosystem services. We need 
new tools, and multi-agent systems are promising new tools in the toolkit for 
the social scientist. 

Multi-agent systems, also referred to as agent-based (computational) 
modeling, consist of a number of interacting autonomous agents (Conte et al., 
1997; Epstein and Axtell, 1996; Gilbert and Troitzsch, 1999; Weiss, 1999). 
Agents can represent animals, people or organizations; can be reactive or 
proactive; may sensor the environment; communicate with other agents; 
learn, remember, move and have emotions. The main components of multi-
agent systems are cellular automata, and models of the agents. Each agent is 
represented as a computerized independent entity capable of acting locally in 
response to stimuli or to communication from other agents. Therefore, the 
first task is to build architectures for intelligent agents and secondly to design 
an organization of interacting agents to accomplish a task.  
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Figure 1.1: Multi-agent system general organization and principles (from 
Ferber, 1999) 
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A multi-agent system perspective of ecosystem management is essentially 
different from traditional environmental economic approaches. Three 
different types of agents can be distinguished: humans who differ in mental 
maps, goals, locations, and abilities; non-humans such as animals and plants; 
and passive agents such as non-living entities. We mainly focus on the human 
agents who are more complicated than other types of agents. 

Wooldridge (1999) argues that intelligent agents are able to act flexibly 
and autonomously. By flexibility we mean that agents are goal-directed 
(satisfying or maximizing their utility), reactive (responding to changes in the 
environment) and capable of interacting with other agents. One of the 
difficulties is balancing reactive and goal-directed behavior. Developing 
models with agents who have only reactive behavior is relatively simple. 
Individual-based ecological modeling addresses problems by simulating non-
human agents as reactive objects (e.g. DeAngelis and Gross, 1992). 
Econophysics (www.econophysics.org), an emerging field that applies 
methods from statistical physics and non-linear dynamics to macroeconomic 
modeling and financial market analysis, approaches human behavior as 
behavior of particles.  

However, humans combine reactive and goal-directed behavior. 
Conventional economics makes use of fully rational actors to study human 
behavior. The rational actors are self-regarding individuals maximizing their 
own wellbeing. However, the powerful concept of the rational actor seems to 
be invalid according to experimental research in economics and psychology 
(e.g. Thaler, 1992; Gintis, 2000b). 

Deliberation about an economic decision is a costly activity in terms of 
time and cognitive effort, and many social scientists argue that people often 
employ simpler decision rules, aimed at satisfying rather than optimizing (see 
Chapter 6). Models of bounded rationality have been used as an alternative in 
economics (Simon, 1955; Sargent, 1993). Still other important dimensions of 
the economic agents have been excluded, such as emotions, motivations, and 
perceptions. In order to include this dimension of behavior we have to enter 
the domain of psychology. 

Psychology and many other social sciences were originally focused on 
experimental research of individual and group behavior. Since the early 50s 
social scientists have used computers to simulate behavioral and social 
processes, although the real breakthrough became in the late 80s due to the 
development of new simulation techniques like cellular automata, genetic 
algorithms and neural networks, and the widespread availability of personal 
computers. Computers became laboratories, allowing simulating behavior 
theories in virtual environments. Those multi-agent systems are used to study 
the stock-market dynamics (Palmer et al., 1994), evolution of cooperation 
(e.g., Axelrod, 1984), evolution of language (Cangelosi and Parisi, 2001), rise 
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and fall of (ancient) societies (Kohler and Gumerman, 2000), pedestrian 
behavior (Jiang, 1999), land use and land cover change (Parker et al., 2001), 
etc. Simulation of multi-agent systems is now recognized as a promising 
methodology for social science as shown by the colloquium on this topic 
organized in October 2001 by the National Academy of Sciences of the USA. 

 In this book we apply multi-agent systems to study the interactions 
between humans and ecosystems. Until recently nature was being seen by 
most individuals as an infinite resource of materials and energy to satisfy 
human needs, as well as an infinite sink for human wastes and pollutants. In 
the last century humankind became aware of its large domination of the Earth 
by transforming land surface, by altering biogeochemical cycle, and by 
adding or removing species and genetically distinct populations in most of 
the earth’s ecosystems (Vitousek et al., 1997). The expected growth of the 
human population and its associated economic activities are likely to 
accelerate the scale and intensity of human-induced changes. 

The concept of ecosystem management was introduced during the last ten 
years as an approach to focus on long-term sustainability of ecosystems. 
Various interpretations on ecosystem management are being used and are 
discussed in, amongst others, Grumbine (1994, 1997) and Christensen et al. 
(1996). Key elements of ecosystem management are the focus on long-term 
sustainability, inclusion of humans as ecosystem components, the inherent 
change and evolution of ecosystems, the importance of structural complexity 
and connectedness to maintain resilience of systems, and the 
acknowledgement of our incomplete knowledge of ecosystems which require 
adaptive management (Christensen et al., 1996). 

We are living in a world with fast-changing ecological and social systems. 
Our current institutional arrangements are based on past experience. Change 
is too fast to depend on learning by doing alone. Computational laboratories 
can explore possible futures. The resulting better understanding of the 
functioning of institutions can contribute to a more sustainable co-evolution 
of people and nature. 

 
 

1.2 MULTI-AGENT MODELING 
 

Most multi-agent models applied to ecosystem management consist of two 
elements: agents and cellular automata. We discuss briefly both elements. For 
a more detailed discussion on the methodology of multi-agent modeling we 
refer to Ferber (1999), Weiss (1999) and Parker et al. (2001). 
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1.2.1 Cellular Automata 
 

Originally, the cellular automata (CA) approach was introduced by John von 
Neumann and Stanislaw Ulam at the end of the 1940s, mainly to give a 
reductionist model of life and self-reproduction. The Game of Life, invented 
by John Conway in 1970, popularized the CA approach (Gardner, 1970). 
This game consists of cells on a checkerboard which can have two states, 
‘alive’ and ‘dead’. Time goes by in discrete steps. According to some 
deterministic rules, which are the same for each cell, the state of a cell in the 
next time step depends on its own present state and the states of all its 
surrounding cells in the present period. The resulting surprising complex 
dynamics which evolved from this simple game attracted the attention of 
many people. Since the early 1970s CA have been used by many disciplines 
to study complex dynamic behavior of systems. 

The basic features of a CA are (Hegselmann, 1998): 
 

• There is a D-dimensional lattice. 
• Time is advancing in discrete steps. 
• There are a finite number of states. At each site of the lattice we have a 

cell, which is in one of the possible states. 
• The cells change their states according to local rules, both in space and 

in time. 
• The transition rules usually used are deterministic, but non-

deterministic rules are allowed too. 
• The system is homogeneous in the sense that the set of possible states is 

the same for each cell and the same transition rule applies to each cell. 
• The updating procedure can consist of applying the transition rule to all 

cells synchron or asynchron. 
 
With regard to our interest for ecosystem management, the application of CA 
can be rather straightforward. In fact, CA can be used to produce a dynamic 
GIS. The lattice represents a map of a certain area. Each possible state of a 
cell represents a possible land use. Due to physical restrictions, cells on some 
locations may be restricted to a limited number of states. For example, a 
secondary forest cannot turn back to a primary forest. Transition rules 
determine when a certain land use of a cell changes into another land use. 
Cell changes can be influenced by local rules; for example, if the cell is a 
forest-cell and if one of the neighbor cells is on fire then the cell turns to fire. 
However, global rules are also possible since land use changes can be 
influenced by demand for certain land on a higher level of scale. For 
example, demand for extra agricultural land can be translated as changing 
those cells to agriculture which are the most suitable. Note that we do not 
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have to use CA for representing the environment, since not all problems are 
spatially explicit, or different spatial explicit models can be used. 

One of the main drawbacks of the attention to CA only is the limited 
inclusion of social processes. It must be noted that social agents can also be 
represented as CA. Within the field of social simulation CA are used to 
simulate social phenomena. One of the first papers in the field is the analysis 
of segregation processes by Schelling (1971). In the CA approach for social 
processes each cell represents an agent, which interacts with its neighbors. 
The state of the cells relates to different characteristics of the agents such as 
social class, attitude, social orientation, etc. An overview of this field is given 
in Hegselmann (1998). 

 A drawback of using CA for representing social agents is its simplicity. 
For example, social networks are probably more complex than the local 
neighbors on a lattice. The possible states in which a social agent can be 
might be too large to be efficiently represented as a CA. The study of agents 
has been a topic of research for a long time in computer science which has 
developed its own tools and frameworks. 

 
1.2.2 Agents 
 
The architecture of agents in multi-agent systems has been much influenced 
by work in Artificial Intelligence (AI). In this field a popular wave is the 
autonomous agents research or behavior-based AI, which studies the 
behavior of adaptive autonomous agents in the physical world (robots) or in 
the cyberspace (software agents). This field in AI is highly inspired by 
biology. The phenomena of interest are those traditionally covered by 
ethnology and ecology (in the case of animals) or psychology and sociology 
(in the case of humans). The agents often consist of sensors to derive 
information from the environment and intelligent functions such as 
perception, planning, learning, etc. Behavior is defined as regularity observed 
in the interaction dynamics between characteristics and processes of a system 
and the characteristics and processes of an environment. Examples include: a 
theory at the behavior level that explains the formation of paths in an ant 
society in terms of a set of behavioral rules without reference to how they are 
neurophysiologically implemented. Another example is the study of 
behavioral rules implemented in robots who have to survive (they need to 
reload energy every now and then) in a physical environment with other 
robots as a way to explore emergent behavior in such a group. An overview 
of this field can be found in, for example, Steels (1995) and Maes (1995). 

Distributed artificial intelligence is a relatively recent development of 
artificial intelligence studies (Bond and Gasser, 1988). It concerns the 
properties of sets of intercommunicating agents coexisting in a common 
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environment. The aim may be to study the properties of such systems in an 
abstract way, or to design systems of immediate practical use, or to use such 
a programmed multi-agents system as a model of a human or other real-world 
system. 

The main dilemma concerning the architecture of agents with regard to the 
study of ecosystem management is the degree of complexity embodied in the 
agent. Since the roots of agent research lie in computer science, the agents are 
designed for certain tasks but do not necessary represent theoretical insights 
from behavioral science. The fields of social simulation (e.g. Conte et al., 
1997) and agent-based computational economics (e.g. Tesfatsion, 2001) use 
the techniques of multi-agent systems together with concepts from sociology, 
psychology and economics to design more comprehensive agents from a 
social science point of view. Nevertheless, empirical validation of the agent 
architecture remains an activity which receives too little attention. More 
cooperation with experimental research and computational experimentalists is 
necessary to improve the construction of the agents. 
 
 
1.3  APPLYING MULTI-AGENT SYSTEMS FOR 

  ECOSYSTEM MANAGEMENT 
 
In this section I briefly discuss what type of questions can be addressed by 
multi-agent systems, and what the possible problems are. As Roger Bradbury 
clearly discusses in Chapter 4, accepting the paradigm of complexity also 
means the recognition that the future cannot be predicted. Using multi-agent 
systems as a tool for the study of complex social ecological systems implies 
that we are not interested in predicting the state of the system in a certain 
moment in the future, like Newtonian science can for the orbits of the planets 
and stars in our universe. The focus of multi-agent systems is to understand 
persistent emergent phenomena. Emergence arises from the context-
dependent, non-linear interaction of the objects and the rules (Holland, 1998). 
Non-linear interaction means that the behavior of the system cannot be 
obtained by summing or averaging the behavior of the constituents.  

 An example is an ant colony where ants with limited individual 
capabilities are able to construct comprehensive societies. A colony of a 
million army ants is a sophisticated ‘super-organism’ (Gordon, 1999). The 
colony carries out its raids and can even keep nest temperatures constant to 
within a degree. An ant colony seems endowed with intelligence far beyond 
that of any individual ant: It seems that intelligence, natural or artificial, is an 
emergent property of collective communication. Camazine et al. (2001) 
provide a state of the art volume on self-organization in biological systems. 
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They show that the combination of laboratory research, field experiments and 
modeling provide a fruitful combination to understand which micro-level 
behavior leads to emerging patterns at the macro-level.  

An example of an emergent property in economics is the equilibrium of 
demand and supply. In conventional economics it is assumed that the 
economic system is in equilibrium, but within agent-based computational 
economics, the economic agents are simulated from the bottom up 
(Tesfatsion, 2001).  

A prominent example of using multi-agent systems for ecosystem 
management is the Bali irrigation system studied by Lansing (2000). A large 
number of subaks, and each subak consists of about 50 farmers, have to 
coordinating planting and irrigation. Synchronous planting has the benefit of 
effectively controlling rice pests, but leads to water bottleneck, since they all 
use the water from the same river. Lansing equipped the agents with simple 
heuristics. Each year a subak compares its yields with the yield of its closest 
neighbors, and copies the cropping pattern of its (best) neighbor. The model, 
using real data of a watershed in southern Bali, produces similar spatial 
cropping patterns as observed in the field. 

The Bali example shows the fruitful use of a multi-agent system 
perspective for the study of ecosystem management. Lansing (2002) 
discusses the role of ‘artificial societies’ in a historical debate in social 
science on methodology. It is clear that the mainstream statistical approach is 
confronted with an alternative, and this alternative is criticized. It is therefore 
necessary that models of multi-agent systems are applied to real case studies. 
This volume shows that there is progress in that respect by presenting  a 
number of real-world case studies, and a number of methodological 
challenges such as validation, experimental research and the use of models in 
a participatory process. 
 
 
1.4 A GUIDE TO THIS BOOK 
 
This section provides a brief outline about the different contributions, and 
how they are linked together. Chapters 2 and 3 discuss multi-agent systems as 
rule-based systems. Marty Anderies proposes in Chapter 2 a general 
framework to describe each system in terms of rules and agents. The 
proposed framework can provide a common language for multi-agent 
systems, and Anderies applies his framework to the several contributions of 
this volume. In Chapter 3 the evolution of institutional rules is discussed. 
How are they coded, created, selected and remembered? Marco Janssen 
argues that linguistics and immunology provide interesting metaphors and 
computational tools to improve the methodology of simulating institutional 
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rules. 
The difference between Newtonian and complexity paradigms as 

mentioned at the start of this chapter are also the starting points for Chapters 
4 and 5. Roger Bradbury describes clearly in Chapter 4 why we cannot 
predict the future of social-ecological systems, and argues that we can only 
study under which conditions emergent phenomena hold. In Chapter 5, Steve 
Manson discusses the problem of validating multi-agent systems. He presents 
a number of practical guidelines and tools, and discusses how differently 
applied studies in this volume address validation. 

One of the crucial problems in multi-agent modeling is the validity of the 
design of the agents. Chapter 6 by Wander Jager and Marco Janssen is an 
attempt to test their artificial agents to experimental data. Their artificial 
agents provide new explanations of observed behavior of subjects in 
laboratory experiments. A next step would be to test these new hypotheses in 
the laboratory. This chapter illustrates that more interaction between 
experimental and modeling research is needed. 

A traditional differential equation model of an Australian rangeland 
system is the starting point in Chapter 7 by Janssen et al. In the original 
model, space explicit dynamics were ignored, but by using a multi-agent 
system approach, it is shown that spatial heterogeneity of grazing pressure 
can lead to quite different conclusions compared to the original model.  

The rest of this volume presents applications of multi-agent models. 
Applications vary from agricultural systems to forests and rangelands. 
Chapters 8 and 9 analyse the effects of agricultural policies in Europe. 
Balmann et al. developed an agent-based model that includes spatial 
interaction of some 2600 individually behaving heterogeneous farms. They 
apply this model to analyse the effects of a limitation of livestock density per 
hectare on a selected intensive production region in the southwest of 
Germany. 

In Chapter 9, Deffuant et al. study the dynamics of organic farming 
practices in the Allier départment in France. The agent-based model is the 
result of an iterative process between modeling researchers and specialists of 
agri-environment. It represents explicitly the propagation of information and 
the dynamics of discussions among farmers, as well as its impact on the 
farmers’ decision process. Deffuant et al. found that the initial heterogeneity 
in perceptions of farmers towards organic farming was a crucial factor to 
explain observed adoption rates. 

Tim Lynam, Chapter 10, uses spatially explicit, multi-agent simulation to 
study the relation of household characteristics and long-term production of 
the Masoka agro-ecosystem in Zimbabwe. Field research provided statistics 
of the households which were used to generate characteristics of the 
population in the model. Assuming different types of decision-making 
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strategies, such as income maximizers and need satisfaction variance 
minimizers, and rainfall variability, a detailed sensitivity analysis was 
performed. Lynam concludes that although the model is incomplete, better 
understanding of the relation of natural resources and the wellbeing of 
households was derived. 

Matthew Hoffmann et al. present in Chapter 11 a first version of a multi-
agent model to study deforestation and reforestation patterns in Indiana 
(USA). Prior to European colonization, Indiana was nearly entirely forested. 
By 1900, only 5–10% of the state was forested, but since then forestland has 
rebounded to approximately 20% of the state’s land cover. The multi-agent 
model of land cover change simulates the observed process of deforestation 
and afforestation in Indiana over time. 

The last two chapters deal with interactions with stakeholders in order to 
solve collective-action problems. Bousquet et al. provide an overview of the 
work of CIRAD on their use of multi-agent systems for ecosystem co-
management by performing role games. By using role games the required 
knowledge can be obtained, the model can be validated and used in decision-
making processes. The discussion of the different applications shows how 
models can be used in support of collective decision-making processes in 
natural resource management. 

In the last chapter, Nick Abel and colleagues discuss a large project in the 
rangelands of New South Wales, Australia. Participatory analysis of the land-
use values of five stakeholder groups showed a great potential for multiple 
land-use as an efficient way of reducing land-use conflicts and satisfying 
stakeholders’ needs, but legal and administration hurdles prevented the 
system change. Participatory policy making generated 160 proposals for 
legal, policy and administrative changes designed to simplify the complexity, 
realize win–win opportunities, resolve conflicts and promote regional 
resilience. The project has been influential within the region, but at State 
level there has been little change so far. 

In sum, the contributions in this volume show that models of multi-agent 
systems can be applied for the study of ecosystem management. Applications 
focused on diffusion processes, explaining puzzling historical observations, 
and using models together with stakeholders in an attempt to solve 
contemporary management problems. The continuation of this endeavor can 
be improved when a number of methodological issues are addressed, notably 
validation, and the link between the behavioral rules of agents and 
experimental data. 
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