Modeling Malaria as a Complex
Adaptive System

Abstract  As the resistance of the malaria parasite o
antimalarial drugs continues 1o increase, as does that of the
malarial mosquito to insecticides, the efficacy of efforts 1o
control malaria in many tropical countries is diminishing,
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This trend. together with the projected consequences of
climate change, may prove to exacerbate substantially the
significance of malaria in the coming decades.

In this article we introduce the use of an evolutionary
modeling approach to simulate the adaptation of mosquitoes
and parasites 1o the available pesticides and drugs. By
coupling genetic algorithms with a dynamic
malaria-epidemiological model. we derive a complex
adaptive system capable of simulating adapting and evolving
processes within both the mosquito and the parasite
populations,

This approach is used to analyze malaria management
strategies appropriate (o regions of higher and lower degrees
of endemicity. The results suggest that adequate use of
insecticides and drugs may reduce the occurrence of malaria
in regions of low endemicity. although increased efforts
would be necessary in the event of a climate change.
However. our model indicates that in regions of high
endemicity the use of insecticides and drugs may lead to an
increase in incidence due to enhanced resistance
development. Projected climate change, on the other hand,
may lead 1o a limited reduction of the occurrence of malaria
due 1o the presence of a higher percentage of immune
persons in the older age class.
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| Introduction

Malaria is one of the world's most important vector-borne diseases: there are few infec-
tious diseases that have as great an impact on the social and economic development of
sacieties. OF a world population of approximately 5.3 billion people in 1990, some 2.2
billion were regarded as being at risk of contracting malaria, while some 270 million
people were actually infected with the malaria parasite. At present. the distribution of
malaria is mainly restricted to the tropics and subtropics, although before the Second
World War malaria was a relatively common discase in many temperate areas of the
waorld,

Although the effective use of DDT and other insecticides after 1945 led 1o a significant
global decrease in the prevalence of malaria and 1o its eradication or near-eradication in
lemperate zones and in some tropical areas, the rate of decrease has now slowed down
considerably, and a resurgence of malaria has occurred in several countries (22, 46]. The
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development of resistance to insecticides is considered to be one of the main obstacles
in using insecticides for vector control in any strategy of malaria control/eradication.
Resistance to insecticides is most pronounced in regions of Africa, Central America and
West and Southeast Asia [30].

A further obstacle is the development of resistance to antimalarial drugs in Pleasmod-
iwm falciparum, the malaria parasite responsible for most deaths. For many centuries,
malaria has been treated with an extract from the bark of the cinchona tree, namely
quinine, while @ new (synthetic) drug, chloroquine, which became available at the
end of World War 11, was found capable of preventing and curing malaria, especially
because it was less toxic and effective in less frequent doses. By the 1960s, however,
plasmodia resistant to chloroquine had emerged, and P falciparum that are resistant
to the drug are currently found throughout extensive regions of Africa, Southeast Asia
and South America [7, 38, 45]. The increased selection and progressive dispersal of
parasites resistant to antimalarial drugs is mainly caused by the fact that these prepa-
rations are increasingly being used as prophylactics and for self-medication, usually in
insufficient doses. The problem of drug resistance has become particularly alarming in
Africa, and its continual exacerbation hampers efforts to provide adequate treatment of
the disease [35],

It is evident that malaria patterns have, hitherto, depended to a large extent on the
effectiveness of control efforts, together with socioeconomic development. Although
new drugs are being developed and work is progressing on various potential malaria
vaccines, given the increasing resistance of the malaria mosquito to insecticides, on
one hand, and of its parasite to antimalarial drugs, on the other, the treatment of
malaria seems likely to be more problematic in the future. A further factor that may
influence future malaria trends, and to which attention has only recently been paid, is
the projected effect of a human-induced climate change on the transmission dynamics of
malaria [6, 27-30]. Anthropogenic climate change may directly affect both the behavior
and geographical distribution of the malaria mosquito and the life cycle of the parasite
and, thus, may have implications for the incidence of the disease.

There are many mathematical modeling approaches o malaria, the first of which
wias Ross’s [39]. After Ross, the models evolved and many important processes were
included. Although these models are not intended 1o include all components of a real
system, they do prove useful in studying the population dynamics of this infectious
discase [2]. Furthermore, modeling experience leads to the formulation of hypaotheses
that may inspire experimental research, an example of which would be the model-
based hypothesis that inbreeding may accelerate the buildup of drug resistance, which
has recently been confirmed empirically in Papua, New Guinea [37]. Over and above
enhancing scientific understanding, an important role of malaria models is to support
decision making in the management of malaria control operations. A well-known
example of a malaria model used for the planning of malaria control was developed
during the Garki project [32]. However, in this model, resistance development, although
acknowledged as a potential important effect, was not explicitly taken into account.
Because the ability of organisms to develop tesistance to human interventions has
become an important issue in managing malaria, current modeling efforts incorporate
the adaptation process by adopting either a deterministic or a stochastic approach (e.g.,
[1, 8, 34D.

Although the above techniques have been useful, new mathematical tools based
on evolutionary processes have appeared during the last decade that are eminently
suitable for modeling adaptation. According to Levins [24], it has hecome apparent that
the classic deterministic approach is incapable of confronting the rapid and unexpected
changes on the horizon. In assessing the impact of both global and local changes, the
modeling of adaptation to changes and modeling of evolutionary processes themselves
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provide a crucial tool with which to scan the future [20], The aim of this article is to
discuss the deployment of evolutionary modeling tools in scanning future risks of the
occurrence of malaria and assessing possible means of controlling those risks.

A model designed to enhance quantitative projections of climate-related changes
in the potential distribution of malaria has been developed by Martens et al. [27, 28,
Although this model does take account of how ¢limate change directly affects the
mosquito population, that is, mosquito development, feeding-frequency, longevity of
the mosquito, and the climatic effect on the incubation period of the malarial parasite
inside the mosquito, it does not address artificial interventions by humans and how
this may affect the increased malaria risk associated with climare changes. To allow
for both antimalarial control measures and the adaptation of mosquitoes and parasites
to such malaria control policies, the simulation model created by Martens et al. (which
describes the transmission dynamics between human and mosquito populations) is
combined with genetic algorithms. The latter involves a general and robust evolutionary
modeling approach based on the mechanics of the survival of the fittest, whereby
the inclusion of the notion of variability within the population renders the genetic
algorithm a suitable tool for simulating the adaptive behavior of a population within a
changing environment [15, 17, 18, 21]. In this article, a simplistic, idealized model of the
resistance cycles associated with insecticide and drug use in malaria control programs
is presented, together with the impact of climate changes. Although this approach
is adopted solely for heuristic purposes, it nevertheless succeeds in clucidating the
mechanism of resistance development, interactions associated with climate change,
and consequences for the implementation of strategies in malaria management.

2 The Model

2.1 Introduction

The model described in this article is an extension of the systems approach previously
adopted by Martens et al. [27, 28] and addresses two general malaria control options,
namely: the use of insecticides to decrease mosquito densities, and the use of drugs
to suppress the viability of parasites. While Martens et al. intended to create a global
model of the effects of an anthropogenically induced climate change on malaria risk,
the model presented here aims at incorporating local dynamics, to derive a generic
local model that takes account of human intervention in terms of insecticide and drug
use and the development of resistance to these control measures.

The interaction between the human population and the mosquito population de-
termines the transition rates among susceptible, infected, and immune populations,
respectively. To this end, the mosquito system is denoted by state variable x(/) and the
human system by state variable y(f) € R”. The potential of the mosquito population to
transmit £, falciparim® is in the model assumed to be influenced by temperature, 7(¢),
and by the use of insecticides, w;(¢). The dynamics within the human population are
affected by the transmission potential of the mosguitoes and by the use of antimalarial
drugs, ws(1).

x(t) = f(T. )

dy(t)
dt

= gy, X, i) (1)

| We have focused on the transmission dynamics of P falciporum because it is the most lethal malaria parasite and is exhibiting
worldwide development of resistance to antimalarial drugs.
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Figure |. Simplified scheme of the integration of a system dynamic model with genetic algorithms.

To incorporate adaptation to antimalarial drugs and insecticides, this dynamic sys-
tem is coupled to genetic algorithms that enable the genetic variety within the mosquito
population and the parasite population (Figure 1). The genetic algorithms determine
parameters that, in turn, determine the resistance of the mosquitoes and parasites and
the optimum temperature for mosquito survival. The system can, therefore, be refor-
mulated as

x(t) = a8, T o)

dy(1)

o = gly, &, 1y, 1) (2)

“ represent fixed parameters in system (Equation 1), T represent

where 7 u{ and w5

the change of the optimal temperature with respect to the reference value, uff and
u$ represent the degree of resistance (see Section 2.3). Now that they are simulated
by genetic algorithms, they are subject to adaptations if the temperature changes or
if insecticides and antimalarial drugs are used. In Sections 2.2, this original model
representation (Equation 2) will be described, and in Section 2.3 the implications of the
incorporation of the genetic algorithms are discussed.

2.2 A Dynamic Malaria-Epidemiological Model

2.2.1 The Mosquito Population

The (infection-related) dynamics of the mosquito population proceed much more rapidly
than do human population dynamics, so that the mosquito system can be considered
as being in equilibrium with respect to changes in the human population. Therefore,
the description of the mosquitoes is given in terms of an equilibrium instead of in 4 set
of differential equations. Following Garrett-Jones [13]. the entire mosquito population
is incorporated in a single state variable, namely: vectorial capacity. The formulation
of vectorial capacity used by Martens et al. [27, 28] is multiplied by the relative fitness
of mosquitoes to insecticides, F™ (see Section 2.3.1), resulting in a formulation of an
adaptive vectorial capacity that includes the impact of the use of insecticides. Further-
more, an adaptive representation of survival probability can be used to describe the
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adaptation of a mosquito population to a change in temperature (see Section 2.3.1):

;\'=M—-FW(H|) (3
—In(z)

where x is the adaptive vectorial capacity; 8 incorporates variables assumed to be
temperature independent (including the efficiency with which a mosquito infects a
susceptible human; the propensity of the mosquito population to feed on humans: and
the density of the mosquito population in relation to man). The term 2 represents the
man-biting habit (number of blood meals taken from humans per mosquito per day);
2y is the daily survival probability of the mosquito; and z; is the incubation period of
the parasite in the vector (in days).

The man-biting habit depends on the frequency with which one vector takes a
blood-meal and the total number of these blood-meals being taken from man. The
frequency of feeding depends mainly on the rapidity of digestion of a blood-meal, a
rate that increases as temperature rises so that at the optimum temperature, one meal is
taken every 48 hours [33]. The relation between temperature and the rapidity of blood
digestion is given in [11]. The resulting equation for the man-biting habit (per day) is

_ =g
B

(4)

)

where B, is the number of “degree-days” required for the digestion of a portion of
ingested blood, (36,5 degree-days at relative humidity 70-909%%), B4 is the minimum
temperature required for the digestion of the blood meal (9.9°C) and 7' is the actual
average temperature (in °C),

The vector's longevity determines its ability to transmit a parasite, because the female
mosquito has to live long enough for the parasite 10 complete its development. There
is presumably an optimum temperature and an optimum humidity for each species
of mosquito, and it is apparent that, between certain limits, longevity decreases as
temperature rises, and increases as relative humidity rises (5, 311, Data reported by
Boyd [5] and Horsfall [19] on mosquito longevity indicate an optimum temperature
of about 20-25°C and an optimum relative humidity of 60-90%, and the assumption
about the relation between the longevity of the Anopheles mosquito and temperature
is based on these data. The maximum mean longevity is assumed to be 10 days
(zz = 0.9) ar temperatures of about 20°C. The assumed (nonadaptive) relationship
between temperature and daily survival probability of the adult Mosquito is written as
follows [21] (see Section 2.3.1 for an adaptive representation):

—1
) = exp ; — ”)) (9]
=444+ 1317 — 0.03 « 72

The incubation period (duration of sporogony) in the vector must have elapsed belore
the infected vector can transmit the parasite. The duration of this latent period depends
on two critical factors: species of parasite and ambient temperature. The parasites de-
velop in the vector only within a certain temperature range, and whereas the minimum
temperature for parasite development lies between 16 and 19°C in the case of P Sfal-
ciparum, the proportion of parasites surviving decreases rapidly at temperatures over
32-34°C (11, 19, 261 The relation between the incubation period and temperature Cif
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higher than 16°C) can be expressed in the following equation [26]:

P

= (6)
T—fs .

=

where zy is the incubation period of the parasite inside the vector (in days), B, the
number of “degree-days” required for the development of the parasite (= 111 degree-
days for P falciparum [11]), T the actual average temperature (between fs and a
maximum temperature of about 40°C; in °C), and 5 the minimum temperature required
for parasite development (16°C for P. falciparum).

2.2.2 The Human Population
The model used to describe the transition between the reservoirs of the human pop-
ulation at risk is based on a microparasite-epidemiological model as described in
(1. 3, 4. 23]. The human population subject to a risk of malaria is divided into three
categories for each of two different age classes (i = 1: children younger than 5; and
i = 2. people of 5 years and older). The three categories are susceptible persons
(), infected persons (), and immune persons (¥h). The latent reservoir is omitted,
because the duration of a stay in this reservoir is usually very short in comparison to
the residence time in the other reservoirs. The total population is represented by ;.

The number of susceptible persons may change over time, as they become members
of the infected class at a rate #. Infected individuals either die from infection at a rate
,u:” or recover to join the immune category (at a rate r2). Immune persons lose their
immunity at a rate r3, and those who have lost their immunity return to the reservoir of
susceptible persons. All newborn babies are assumed to be members of the category
of susceptibles; as they grow older, they graduate from the younger age class to the
older (at a rate x,). People die from other causes at a rate w.

The dynamic behavior of the human system can be described thus (see also Figure 2)

dyfdt=M-y
with y = [.\'":”- .],:11‘ )’E”. ,1’;‘“. ,V_i“- _1,;_’), Wl N
and
[—ri—p=23 0 0 0 ¥ 0 A—‘
Az —i =il 0 0 0 s 0
” 0 —p—p"=ki—mn 0 0 0 0
M= 0 n Ay —u —,u‘"”—r_, 0 0 0
0 0 " 0 —r—p—Ay 0 0
0 0 0 5 Ay —rs—p 0
L 1 1 1 1 10

where # is the rate of infection, 7, the rate of loss of infection, and »; the rate of loss
of immunity.

The rate at which individuals become infected (1) depends on the adaptive vectorial
capacity (x) that represents the transmission potential of the mosquito population, the
proportion of infected people in the human population, the amount of drug use, and
the sensitivity of malarial parasites to such drugs (i.e., the fitness of the parasites).
FP(u,) represents a maximum fitness that may decrease in the event of antimalarial
drug use, depending on the degree of resistance (see Section 2.3). The use of drugs.
thus. leads to a decrease in the infection rate and, consequently, an increase in the rate
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Figure 2. Scheme of the dynamics within the human system.

of losing immunity and in the rate of losing infection (formulas 9 and 10).

(1 2
¥ s

Wi

¥ = - FP () (8)

Rates of recovery from infection appear to increase with the increased longevity of
living people in endemic areas. Assuming that reexposure does not occur, states of
infection and immunity endure for fixed periods of time. However, i a person is
further exposed before such a period has elapsed, both infection and immunity are
prolonged. The basic rate of loss of infection, by, is defined as the reciprocal of the
average duration of infectiousness (average one vear for P falciparum). The basic loss
rate of immunity b, is 0.67/year, corresponding with a mean duration of immunity of
1.5 years [3]. If infection occurs at a per capita rate 71, the average per capita rate of
loss of infection () and loss of immunity (1) as 4 function of # can be expressed as
follows:

it 7 =0 then n = by else 1= r /(" = 1) (9)

it =0then »y = 1/h; else 1y = n/(e™ — 1) (1)

2.3 Adaptation Modeling

Now the application of genetic algorithms to simulate the adaptation of the mosquito
and the parasite population can be described. For each subject of adaptation (temper-
ature change, use of insecticides, and use of drugs) a genetic algorithm is employed
in modeling the transmission of genetic information by means of sexual reproduction.
In the following sections, one of the most crucial aspects ol the genetic algorithm
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is discussed, namely its fitness function, as used to simulate the fitness of individual
maosquitoes and parasites.

The output generated by each genetic algorithm is a set of individual parameter
ralues of uf , wd, and 7. In conformance with the system dynamic framework as
described in Section 2.1, the averages of these parameter values are used (uf, uf, .

If genetic algorithms are to be used to simulate the dynamics of malaria, the validity
of a number of assumptions must first be considered:

o The values adopted for crossover probability () and mutation probability ()
are imaginary numbers and cannot be validated by empirical research. Although
the selected numbers are at best educated guesses, they have no significant
influence on the main conclusions, as is shown in [21].

e There is a lack of knowledge about the various shapes of the fitness functions, and
those discussed in the following subsections, although mimicking observed
patterns (e.g., [10, 40D, are therefore rather subjective and should be regarded as
being of illustrative value only.

o There is a question as to which population size is adequate for simulating the
variety within a population. Too large a population would detract from the model’s
usefulness as an interactive learning tool. After testing various numbers, we
decided that a population of 100 individuals (mosquitoes/ parasites) would be
appropriate. Although we realized that the “real” population of mosquitoes or
parasites cannot be accurately simulated by reference to such a group,
nevertheless, a simulation of the aggregate adaptive behavior of a representative
heterogeneous group of mosquitoes and parasites can be made.

These problems are by no means unfamiliar within the modeling community. Taylor
[43] discussed the lack of experimental data with which one could validate the modeling
approach to the issue of resistance development.

2.3.1 The Mosquito

With the help of the genetic algorithm, sexual reproduction is implemented using the
two genetic parameters, namely the crossover probability () and the mutation prob-
ability (p,;). To simulate the adaptation of mosquitoes, a crossover probability of 0.4
and a mutation rate of 0.001 were assumed. These values are consistent with those
generally used in genetic algorithm applications, and the results are not sensitive to this
assumption [21],

The fitness of a (biological) population is related to the chance of its members
begetting descendants [16]. The expected lifetime of a mosquito is assumed to be a
measure of individual fitness, since life expectancy might be related to the production of
offspring. Having adopted this approach, we distinguish two pressures on the mosquito
population, namely temperature change and insecticide use. We assume that adaptation
to temperature change and to insecticides are independent of each other.

Adaptation to Temperature Change For cvery mosquito, i temperature level is as-
sumed at which its expected lifetime would be maximized (Figure 3), but within the
mosquito population there is variation of these optima among individuals. If the tem-
perature increases over a longer period (siy various years), mosquitoes for which the
optimum is higher than average exhibit greater fitness. Due to the mechanisms dasso-
ciated with the “survival of the fittest,” the average optimum temperature for longevity
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Figure 3. Life expectancy (in days) as a function of temperature (Equation 5).

will, therefore, rise.* The implementation of this process by means of a genetic algo-
rithm proceeds as follows. Within the mosquito system, the daily probability of survival
is a function of temperature (see Equation 5). Within the population, individual temper-
ature optima are scattered around the mean temperature. For simplicity, no distinction
is made in seasonal temperature changes. The daily survival probability can, therefore,
be treated as a function of the local mean temperature, whereupon the variable T
is introduced, representing the individual adaptation to temperature. This results in a
daily survival probability so that the fitness function of mosquito i becomes

74

Frij=—44+131-(T =T —0.03- (I = 1) (11)

If temperature 7" changes, the value of 7/ will also change, since the “survival of the
fittest” keeps the mosquitoes in the optimum temperature zone.
Furthermore, the daily survival probability of the adult mosquito becomes

-1
"_x=exp( — = - —— - )) (12)
=444+ 131 - (T — T4 —0.03. (T — T%)2

where 7 is the mean of 7).
Adaptation to Insecticides An important human-induced pressure on the mosuito
population is the use of insecticides. Several models have been developed to enable
us to understand and manage the evolution of insecticide resistance, and nearly all of
them assume that resistance is controlled by two alleles at one locus [1, 43]. However,
the fitness function is based on the studies published by Schapira [40] and Tabashnik
[41], although our modeling framework forces us to make subjective interpretations,
In our simulations, we distinguish three kinds of mosquitoes, namely, susceptibles,
moderately-resistant, and resistant individuals, taking them as three classes of individual
sensitivity to insecticides. The assumption is that a certain dose of insecticide reduces
fitness in the manner depicted in Figure 4, whereby it is assumed that the same dose
would have a more pronounced impact on susceptible mosquitoes than on (moderately)

2 We recognize that this accounit of adaptation to unfavorable temperatures is just one of the possibilities. Another would be the
migration of mosquitoes to microhabitats where temperatures are more suitable.

[ 3¥]
I~
—
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Figure 4. Relative fitness of mosquitoes related to the use of insecticides. A certain dose of insecticides leads to a
reduction in fitness that is more severe in the case of susceptible than resistant individuals.

Table |. Fitness of mosquitoes.

n O ERO
susceptible [0.0.0.99) 1.0 1 — 1 /(0.002 + 1))
moderately resistant (0,99, 0.999) 095 1 — iy J0.05 + 1)
resistant [0.999, 1.0] 0.9 1 — iy (0154 )

1’<i"'\’“(p is relative biotic Arness .’-u':\ﬂ is relative fitness under insecticides

resistant ones. The fitness function expresses the notion that the fitness of the three
classes drops in a decreasing rate for a higher dose of insecticides [10, 40]. Obviously.
if alternative insecticides are applied that affect the three categories differently for some
reason, for example, by being more effective, the results and conclusions may differ.

In addition, the simulation incorporates a “biotic fitness” component that represents
the relative fitness of the mosquito, in the event of no insecticides being used at all. A
lower value for the biotic fitness of the more resistant genes explains the lower density
of these genes in an insecticide-free environment. Given an initial random distribution,
Table 1 is derived for the fitness of mosquitoes to which a certain dose of insecticides
uy is applied, whereby we assume that 99% of the mosquitoes are susceptible, 0.9%
are moderately resistant, and 0.1% resistant in the initial situation.

The fitness function for a mosquito F7 (), is the product of the “biotic” and “insec-
ticide™ fitness: the average fitness of the mosquito population, £ (), is used in the
equation for the adaptive vectorial capacity x.

2.3.2 The Parasite

The dynamics of the gene pool in parasites differ from those in the mosquitoes. Because
the population of parasites is spread among the human population and the mosquito
population, the transmission of resistant parasites through a vector population to other
human hosts limits the efficacy of adaptation in the parasite population at large. Note
that a single gene pool for parasites is assumed, although several local clusters do exist
(in the hosts). In view of the lack of relevant data, we have been obliged to use the
same crossover and mutation probabilities as for the mosquitoes in the reference runs.

I~
[A5]
I~
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Table 2. Fitness of parasites.

o By B
susceptible (0.0, 0.99) 1.0 1 — 1:,/(0.002 + 115)
moderately resistant — [0.99,0.999) 095 1 — 1/ (0.05 + 213)
resistant [0.999, 1.0] 0.9 I = /(0,15 + 1)

A I . =~ W+ -
!"': is relitive biotic fitness I-‘ﬁh is relative fitness under drugs
10

Adaptation to Drugs Having established the modeling approach to the resistance
among mosquitoes to the use of insecticides, the adaptation of parasites to the use of
antimalarial drugs is modeled in a similar manner. Thus, a three-phenotype model is
simulated by distinguishing three kinds of parasites, namely, susceptibles, moderately
resistant, and resistant individuals, and these are taken as three classes of individual
sensitivity to the drugs involved. Given an initial random distribution, Table 2 is derived
for the fitness of parasites to which a certain dose of drugs w, is applied, whereby it
is assumed that 99% of the population is susceptible, 0.9% is moderately resistant, and
0.1% resistant in the initial situation.

Similarly, the fitness function for a parasite FP(u), is the product of the “biotic”
and “drugs” fitness; the average fitness of the individual parasites, F#(u,), is used to
determine the impact of resistance on the transmission dynamics within the human
population in Equation 8. It should be noted, however, that in some places hiologi-
cal advantage of chloroquine-resistant P. falciparum has been observed (discussed by
Wernsdorfer [44]). This would imply that resistance development would proceed more
rapidly than under the assumption discussed above.

2.3.3 Migration and Refugees Among Mosquitoes and Parasites

Georghiou and Taylor [14] argued that the migration of insects tends to delay the rate
of evolution of resistance. In addition, the percentage of Mosquitoes or parasites not
reached by the antimalarial treatment (the so-called refugees) will inevitably influence
resistance development. The complex adaptive systems approach takes account of
both of these processes in the development of resistance, among mosquitoes as well
4s among parasites.

It would seem self-evident that, depending on landscape and infrastructure, mos-
quitoes are more or less able to migrate from place to place, and that mosquitoes
susceptible to insecticides may, thus, enter a treated area. Moreover, parasites suscep-
tible to antimalarial drugs can also migrate, whether they are carried by mosquitoes or
humans. Migration is modeled by assuming that during each time step a fraction of
the new population is bred under the initial conditions, that is, not yet adapted to the
changed conditions.

Insecticides are sprayed on specific areas so that 100% coverage is seldom achieved.
Drugs are not taken (sufficiently) by all humans, so that a fraction of the parasites
escape from it. This phenomenon of refugees is modeled by assuming that during
each time step, a part of the population, the size of which is randomly selected, has
not been treated despite the control programs that have been implemented.

3 Results and Discussion

3.1 Introduction

The experiments deal with the consequences of the use of insecticides and antimalarial
drugs, together with a temperature change, on the occurrence of malaria for 2 time
horizon of one decade, using time steps of 0.1 year. Although malaria situations are
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extremely heterogeneous with respect 1o resistance to change, the two types of re-
gions distinguished are a region of low endemicity and a region of high endemicity.
Although the real generational longevity among the parasites and mosquitoes is not
specified, the time horizon is based on observed time elapsed in acquiring resistance
[21]. Furthermore, we assume that the initial force of infection (1) is 2.0 per annum in
highly endemic regions and 0.1 in areas of lower endemicity [28]. These values were
chosen because they lie within the range of the values reported in several studies on
the pristine force of infection among young children. The initial settings for these sys-
tems are given in Table 3. Areas of lower endemicity can be characterized as exhibiting
low vectorial capacity resulting in a high percentage of susceptible persons (80%),
and low percentages of infected (28%) and immune persons (%12%). Arcas of low
endemicity vis-i-vis P. falciparum can be found in Southeast Asia and South America.
Regions of high endemicity are characterized by a relatively high vectorial capacity. In
the initial situation there is a high percentage of immune (=68%) and infected persons
(x27%). The younger age class especially suffers from a high percentage of infected
(2245%). Highly endemic regions are mainly found in tropical Africa.

We now propose to report a set of results that we have derived using the complex
adaptive systems approach. In the starting year, the situation is assumed to be near
equilibrium. This assumption about an equilibrium state is made for analytical pur-
poses, namely, to render the impact of control policies and temperature change on the
occurrence of malaria transparent, thereby including the adaptation of mosquitoes and
parasites. Therefore, we have assumed a steady-state situation in demographic, social,
and economic development, although we recognize that these factors may influence
future developments of malaria.

The results are presented as time series covering a period of 10 years, In view of the
stochastic elements of the model, we elected to use a large number of runs (100) and
determine the mean and the extremes of important indicators.” This procedure yields
ranges of uncertainty, whereby the uncertainty does not lie in the different parameter
values of the model, but rather in the stochastic characteristics and the complexity of
the system.

In the interest of analytical lucidity, two broad control levels for both insecticides
and antimalarial drugs are distinguished, namely, the low and the high dose. In the
case of a low dose, we adopt a value of #; equal to 0.002, which represents a 50%
deterioration in the fitness of susceptible mosquitoes or parasites, The high dose u; is
assumed to be equal to 0.05, such that the fitness of the moderately resistant mosquito
or parasite decreases by 50%.

A typical outcome is shown in Figure 5, which shows the impact of using a low
dose of insecticides. Although the input variables are the same for the 100 runs, there
is a large spread in the optimal temperature for the mosquitoes, the adaptive vectorial
capacity, and the incidence of malaria. Although on average the use of a low dose of
insecticides leads to an increase in the incidence of malaria in the long run, it might also
lead to a slow decrease of the incidence if evolutionary adaptation among mosquitoes
proceeds very slowly. To envisage the trends for the various sensitivity tests we will
confine ourselves to depicting the average scores in the following subsections.

3.2 Impact of Control Programs

If we consider the case in which mosquitoes and parasites do not adapt to the use
of insecticides and drugs, we are able to calculate the new equilibrium given that
constant levels of insecticides and/or drugs are used. Because the impact of both control
programs is modeled in a similar manner, they have identical effects. The control

3 Experiments showed that a higher number of runs would not affect the mean values significantly.
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Figure 5. An example of an experiment in a region of high endemicity. Depicted are the average and extremes
(a) and (b); and fraction of resistant, moderately resistant, and susceptible mosquitoes (c), and average fraction of
immune and susceptible people (d), for a sample of 100 runs.
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Table 3. The initial situations were arrived at as follows: For highly endemic regions an infection rate, rj, of 2.0 is
assumed, and for regions of lower endemicity an infection rate of 0.1. The birth rate is assumed to be equal to the

natural death rate, although the additional death rates due to malaria imply a slightly declining population. The initial

values for f), y‘,". yé”. and y'3lJ reflect an equilibrium situation in the case of malaria-related deaths not being included.

Low endemicity  High endemicity  Description

B 0.02226 013445 temperature-independent parameter
B 36.5 degree davs blood digestion

P 9.9 minimum temperature

B 111 degree days development parasites
fs 16.0 minimum temperature development parasites
i 21.88 initial local mean temperature

X 0.00335 0.02018 adaptive vectorial capacity

X 0.02 birth rate

Ay 0.2 aging children

i 0.02 natural death rate

s 0.04 fatality rate (0-3)

,u'f‘ 0.01 Fatality rate (=5)

b 1 hasic loss rate infection

b 1.5 basic duration immunity

yHo) 0.077 0.011 susceptible persons (0-5)

B ()] 0.718 0.034 susceptible persons (>3)

) 0.007 0.041 infected persons (0-3)

35 (0) 0.076 0.231 infected persons (=5)

ph) 0.008 0.039 immune persons (0-3)

1E0) 0.115 0,644 immune persons (>5)

program will lower the rate of infection as a result of (a) rendering the mosquitoes
and/or parasites less fit, and (b) the decrease in the percentage of infected persons.
The percentage of immune persons will likewise decrease, resulting in an increase in
the size of the fraction of susceptible humans.

As expected, the incidence of malaria will decrease in regions of low endemicity,
as a consequence of the control programs (Figure 6a). In regions of high endemicity
an increase of malaria may occur if the control programs are not stringent enough,
the effect being a steeper increase in susceptible humans (immune persons lose their
immunity) relative to the decrease in the infection rate (Figure 6h).

As a result of the ability of vector and parasite to adapt to the control programs,
such programs’ effectiveness decreases in such a manner that the new equilibria are
located nearer to those obtained in the absence of control programs. Not unexpectedly,
adaptation may eventually lead to higher incidence rates than those obtained in the
absence of adaptation. A notable exception is the case of low doses in regions of
high endemicity, since adaptation will then result in a less-pronounced increase in
susceptibles that will exceed the reduced decrease in the infection rate, leading 10
lower incidence rates.

In Figure 7 we have depicted the averaged values over time for different levels of
control programs. In regions of low endemicity the adaptive vectorial capacity first
decreases, but due to adaptation among mosquitoes, subsequently increases, albeit o
4 level that lies somewhat below the initial level. The result is a similar pattern in the
incidence of malaria, although the level continues to fall (gradually). It is, thus, evident
that 2 combination of both drugs and insecticides at low levels is more efficient than
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Figure 6. Incidence of malaria for different levels of control in the case of no adaptation (high and low endemic

regions).
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of insecticides. For the scenario com low, low doses of insecticides as well as drugs are combined. This also holds
for com high.

high level use of only one of the two, a finding that reflects the enhanced development
of resistance at higher doses.

In regions of high endemicity, the decrease in adaptive vectorial capacity exhibits
a similar pattern to that obtained in regions of low endemicity. (We would expect
that resistance development would differ in the two regions due to a difference in the
gene pool. Nevertheless, for simplicity’s sake we have used the same fixed population
size within the genetic algorithm and therefore have arrived at similar results. An
improvement of the model might be the coupling of adaptive vectorial capacity and
the population size of the genetic algorithm.) Due to the difference in the profiles of
the populations, the patterns of incidence of malaria are quite dissimilar. Following a
reduction in incidence at the outset of the control programs, incidence subsequently
shows an increase due to the lower effectiveness of the control measures. Due to the
high fraction of susceptible humans after a successful period of control, again as a result
of the flow of immune persons due to the increased rate of immunity loss, incidence
may even rise to surpass the initial level. In the long run, a combination of two low
levels of control does not achieve a better performance than control by a single method.
Indeed, incidence peaks at a level even higher than the initial (precontrol) level due to
the higher number of susceptible humans who become reinfected.
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3.3 Sensitivity of Malaria Incidence to Migration

Migration of mosquitoes and parasites can influence the development of resistance.
Comins [9]. for example, showed that the migration of insects may greatly retard the
development of insecticide resistance, and recent observations in Papua, New Guinea,
and Tanzania support such model-based hypotheses [37]. Various studies ( e.g. [9,
42]) found two distinct phases in the time required to develop resistance. At low
doses, resistance develops more rapidly as the dose increased, paralleling the case in
which migration is absent, this in contrast to the case of high doses in which resistance
develops more slowly as the dose increases. In the absence of migration, the rate
of resistance development is determined primarily by the rate at which susceptible
genes are removed from the population. As the dose increases, susceptible genes are
removed more rapidly, and resistance consequently develops apace. At low doses in
the presence of migration the pattern is similar. Where migration is present and doses
are high enough to kill heterozygotes (which are intermediate between the susceptible
and resistant genes, comparable with moderately resistant in this article), however,
mosquito mortality due to insecticides also removes resistant genes from the population.
As the dose increases in this range, more heterozygotes are killed, leaving relatively few
resistant mosquitoes. The resistant survivors are effectively swamped by the susceptible
immigrants, thereby retarding resistance development.

We analyzed the impact of mosquito migration on insecticide resistance develop-
ment by postulating various levels of insecticide application and various percentages
of migration and subsequently calculating the number of time steps required for 50%
of the genes to achieve resistance. The results are depicted in Figure 8 and show,
as expected, that the migration of susceptible mosquitoes impedes the development
of resistance. Furthermore, at high levels of migration (>40% inflow of susceptible
mosquitoes) the development of insecticides resistance among the mosquitoes will be
entirely blocked.

That the results do not show the two distinct phases that were found in [9] and [42]
is a consequence of our different fitness function® for the various genes. The relative

4 Commins [9] and Tabashnik and Croft [42] do not actually employ the term “fitness function,” but in our interpretation it is
equivalent to their “dose-mortality lines.”
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Figure 9. Effects of dose on the rate of evolution of resistance featuring various percentages of refugees per time
step.

fitness among the various gene combinations remains rather the same along the line
of increasing doses of insecticides. This is not the case for models such as the one
adopted by Tabashnik and Croft [42], since heterozygotes are not killed at low doses,
but only at high ones. In fact, in such models there is a kind of threshold value in the
fitness function (survival rates for the different types of genes). while in our model a
more gradual decrease of the fitness function is assumed. There is no field data that is
known to the authors at the time of writing that would favor either of these approaches.

3.4 Sensitivity of Malaria Incidence to the Coverage Rate

In the absence of refugees from control programs (i.e., 100% coverage), rates of insec-
ticide resistance increase with increasing doses. If, however, a fraction of the mosquito
population evades treatment by becoming “refugees,” the development of resistance
is expected to be impeded. Tabashnik [41], for example, shows that if 10% of the
mosquitoes are refugees evading exposure 1o insecticides, this may significantly im-
pede the development of resistance.

We explored the impact of the coverage rate for the different doses applied in various
control programs, and our results are depicted in Figure 9. For each time step a certain
fraction of the mosquito population is not reached by the control measures, and two
distinet phases in the time required to develop resistance were found. In the case
of low doses and low percentages of refugees, the results are about the same as in
the case of zero refugees. However, when higher doses are applied, the time period
required to develop resistance rapidly lengthens. The doses of control that mark the
two distinct phases are different for each of the various fractions of refugees. Where
higher percentages of refugees are concerned, the period of time required to develop
resistance starts Lo become greater at an earlier juncture. Among more than 50% of
the refugees, resistance will not develop at all. The rate of evolution of resistance
by P falciparim could be retarded by selective treatment of those people with high
parasitacmias.
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An explanation for the existence of these two distinet phases, which are also found
by Tabashnik [41], is the fact that during the period in which the mosquilo evades
treatment, the benefits of being resistant do not hold. In other words, mosquitoes will
not benefit from being resistant in periods during which they are not being sprayed
with insecticides. On the contrary, during such periods, susceptible moseuitoes enjoy a
higher biotic fitness than resistant mosquitoes. By the same token, in the periods during
which the mosquito population is reached by insecticides, a resistant MOSUIto enjoys
the benefits of higher fitness. In the case of higher doses, the difference in fitness in the
two cases (reached or not reached by a control program) becomes greater, resulting in
the time required to develop resistance becoming longer. Furthermore, the presence of
4 higher fraction of refugees decreases the average time during which the population
in general profits from the availability of resistant genes, consequently impeding the
development of resistance.

3.5 Adaptive Malaria Management

In this subsection we analyze the impact of the combined effects of climate change and
resistance development among mosquitoes and parasites on the prevalence of malaria,
This analysis is performed using an adaptive management style, that is, one that relates
the level of control programs according to the observed state of the system. Because
in our model the resistance development dynamics are implemented in an identical
manner for both mosquitoes and parasites, we need only consider one of the two in
the analysis, and the mosquitoes are selected for this purpose.

The use of insecticides is related to the observed incidence of malaria. and there are
two levels of application: a zero dose and a high dose. We assume that if the incidence
of malaria fell below 20 per 1,000 persons, the use of insecticides would be stopped,
while if malaria once more exceeded this level, it would be reintroduced again (at high
dose levels). Furthermore, if the incidence of malaria exceeded the level of 100 per
1,000 persons, which is above the initial level, the use of insecticides would be stopped
as not being effective,

The results set out in Figure 10 illustrate that in areas of low endemicity the use
of insecticides leads to a successful control of malaria occurrence, However. if the
temperature was to increase by some 0.5°C within a single decade, the efforts to control
malaria would have to be intensified significantly. In areas of high endemicity the
control of malaria fluctuates during the decade while the incidence would continue
to fluctuate around the level of 100 per 1,000 persons regardless of any temperature
increase.

This modeling exercise thus shows that it would not be possible to eradicate malaria
in regions of high endemicity using the assumed (i.e., adaptive) management style.
However, in regions of low endemicity malaria could be reduced significantly using
adaptive management, although increased efforts would be needed in the event of
climate change.

4 Conclusions

Models can be useful, especially if the opportunity to perform experiments in labora-
tories or in the field is limited. This is certainly the case where the growing problem of
resistance development among malaria vectors as well as malaria parasites to control
programs is concerned, and much remains to be elucidated. Most malaria modeling
approaches, however, do not explicitly address the evolutionary character of the devel-
opment of resistance. The malaria assessment model presented in this article is neither
comprehensive nor predictive, but rather intended to include evolutionary processes of
resistance development to provide insights into this complex adaptive system and thus
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Figure 10. Control patterns and malaria incidence for a region of high endemicity (a and b) and low endemicity
(c and d) in the event of an adaptive management style being adopted. The different lines show the impact of a
projected climate change of the adaptive control programs.

help us to arrive at a better understanding of the possible effects of control programs.

The analysis distinguishes between two exemplary malaria regions, although malaria
situations are extremely heterogeneous with respect to resistance to change. The results
for the two situations described in this article suggest that adequate use of insecticides
and drugs may reduce the occurrence of malaria in regions of low endemicity, although
increased efforts would be necessary in the event of a climate change. However, the
model indicates that in regions of high endemicity the use of insecticides and drugs may
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lead to an increase in incidence due to enhanced resistance development. Projected
climate change, on the other hand, may lead to a limited reduction of the occurrence
of malaria due to the presence of a higher percentage of immune persons in the older
age class. Given this observation, to retard the evolution of resistance. a combination
of methods or drugs should be used, combined with a selective high dosage rate for
those people or areas most vulnerable. Elements of 4 sustainable antimalarial policy in
regions of high endemicity will furthermore need to rely upon a stimulation of socio-
economic development and provision of vector-proof housing. However, given the
multiplicity of ecological and biological elements and of the natural, adaptive defence
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mechanisms of the malaria parasite/vector complex, control or eradication must be
planned with consideration of prevailing local conditions.

The modeling approach presented here fits in well with the qualitative attention cur-
rently being paid to the importance of evolutionary principles (e.g., [12, 25D. However,
a great deal of empirical research is needed to improve the modeling approach. In the
specific case of malaria, it is especially important that more insights into the possible
shapes of the fitness functions of the parasites and the mosquitoes are acquired. This
need is illustrated by the results of the impact of migration on the development of
resistance at high doses, since they differ from the results of previous studies as a result
of different assumptions regarding the fitness functions. Nevertheless, the fact remains
that development of integrated assessment models that are hased on the evolution-
ary and local dynamics of ecological systems may prove essential in assessing future
developments in these complex adaptive systems.

The present version of the model simulates the incidence of malaria based on the
use of insecticides and medication together with temperature change. Additional fac-
tors would need to be included before one could speak of an integrated approach to
the malaria problem, whereby the inclusion of environmental management would be
of particular importance. The effects of land use changes, water management, housing,
and so forth on malaria transmission would therefore need to be incorporated. As a
means of accommodating such spatial differentiation, the use of geographical infor-
mation systems (GIS) might be considered. In fact, the present model simulates the
dynamics of a single area, whereas in a spatial model it would be connected to changes
in other areas.
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