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The development of climate change response strategies is expected to remain an important issue in the next
few decades. The use of optimization techniques might serve as a helpful guide in this process. Although. in
recent years, a number of studies have focused on optimization techniques, the optimization models do not
fully employ the dynamics of climatic and economic systems. In this paper a heuristic is introduced that
combines an integrated simulation model and an optimization technique (local search). This approach may
be considered as a first step towards a more comprehensive and systematic analysis of climate change
response strategies in a dynamic setting described by a simulation model. Results of a number of
experiments in which the heuristic is applied to the integrated global assessment model TARGETS are
discussed.

Key words: optimization, simulation. climate change

INTRODUCTION

Since the 1980s, the possibility of a human-induced global climate change has been regarded as one of
the most important global environmental problems, and such a change can have profound economic
and social implications for future generations all over the world. International efforts have therefore
been directed at the development of response strategies which mitigate the risks associated with
anticipated climate change (UN, 1992). Optimization might serve as a helpful guide in the search for
appropriate response strategies. In this article, a heuristic is discussed that can be used for this
purpose.

Mathematical models have made an important contribution to the understanding of the climate
change problem, and vary from General Circulation Models (GCMs) to integrated assessment
models. The former rely upon mathematical equations of atmospheric, oceanic and terrestrial
processes, which are based on the laws of physics. The Earth’s atmosphere is divided into gridboxes
horizontally and consists of several layers vertically. Extensions of GCMs are ‘Coupled” GCMs
(CGCMs) which are coupled ocean/atmosphere circulation models. These (C)GCMs are capable of
simulating virtually all important climatic variables (IPCC, 1992). (C)GCMs are often employed to
predict the equilibrium surface temperature increase following a doubling of carbon dioxide
concentration.

An important drawback of (C)GCMs is that the necessary simulation runs require a vast amount
of computing time. Integrated assessment models have therefore been developed as scientifically-
based policy models describing the climatic system on a global scale. Simplified versions of
specialized models from various scientific areas are linked together to describe the causes,
mechanisms and effects of climate change. Aithough integrated assessment models do not describe
the complex climate system in full detail, they can be used interactively in order to estimate the effects
of various scenarios. Examples of such models are IMAGE (Rotmans, 1990), STUGE (Wigley et al.,
1991), ESCAPE (Rotmans et al., 1994a) and TARGETS (Rotmans et al., 1994b).

The models described above simulate the cause-effect chain (Fig. 1, perspective 1) and scan the
future according to possible scenarios. Given a set of policy targets, optimization techniques may be
used to derive suitable strategies (Fig. 1, perspective 2). However, simulation models as described
above are too complex to be used in an orthodox optimization approach. Another strain of
mathematical models, namely optimization models, has been developed in order to identify ‘optimal’
response strategies (see €.g. Nordhaus, 1992, 1993; Tahvonen et al., 1993). Although all mathemat-
ical models are simplifications of reality. optimization models require simplifications so that these
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Fig. 1. Different perspectives on the use of models: (1) simulation: effects of scenarios are estimated using (C)GCMs and

integrated assessment models; (2) optimization: search for optimal strategy given constraints on effects using parameterized

optimization models; and (3) heuristic approach (this study): search for an optimal strategy using an optimization technique
(local search) and a simulation model (integration assessment model) in an iterative manner.

models do not fully employ the system dynamics. This disadvantage of optimization models may
limit its use in decision-making concerning climate change related problems.

Nevertheless, optimization in itself could prove to be useful in the development of response
strategies. In this paper a heuristic optimization approach is introduced which combines an
optimization technique (local search) and an integrated assessment model (Fig. 1, perspective 3).
This approach takes the dynamics of the system into account and yields (local) optimal strategies.
Such an approach might prove to be an important step towards a more comprehensive and
sophisticated analysis of climate change response strategies in a dynamic setting described by a
simulation model.

The organization of this article is as follows: after the climate change problem is discussed briefly,
the methodology adopted for the optimization approach is presented. A number of policy-evaluation
experiments are derived using the integrated global assessment model TARGETS of which a short
description has been given. Results of an attempt to solve an illustrative optimization problem are
discussed, whereby the objective is to maximize economic output given a restriction on the (rate of)
temperature increase. Finally, a number of concluding and evaluative remarks are made.

CLIMATE CHANGE

The greenhouse effect is a natural phenomenon. It is caused by long-wave terrestrial radiation, which
has been re-emitted from the surface of the Earth, being trapped in the atmosphere by the presence of
clouds and trace gases, i.e. those capable of absorbing radiation, such as water vapour (H,0), carbon
dioxide (CO,), methane (CH,), nitrous oxide (N,O), halocarbons and ozone (O,). Without this
natural greenhouse effect the mean surface temperature would have been about 33 °C lower (IPCC,
1992). However, there is growing evidence that the greenhouse effect is enhanced by anthropogenic
emissions of greenhouse gases. It is known that the increases in atmospheric concentrations of
carbon dioxide, methane, nitrous oxide, chlorofluorocarbons (CFCs) and other trace gases which
have occurred during recent decades are largely attributable to human activities. These increases are
expected to result in a rise in the global mean surface temperature of the Earth. In informed circles,
the only debate is about the extent, rapidity and geographical distribution of such a rise in
temperature.

The most important greenhouse gas apart from H,O is CO,, which is expected to be responsible
for more than one-half of the potential enhanced greenhouse warming. The main present sources are
the combustion of fossil fuels (6 GtC/yr)* and land use changes (1-2 GtC/yr) (IPCC, 1992).

The net energy input in the lower atmosphere resuits in an additional warming of the Earth’s
surface. Over the last 100 years the global mean surface temperature is believed to have increased by -
between 0.3 and 0.6°C (IPCC, 1992), although it is not known to what extent anthropogenic

*GtC = gigatons (10'® grams) of carbon.
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emissions have caused this increase. Climate model experiments show that an instantaneous
doubling of the atmospheric CO, concentration would lead to an increase in the average surface
temperature of between 1.5 and 4.5°C+t (IPCC, 1992).

The future temperature increase depends on current uncertain trends which are significantly
influenced by policy measures, as well as being determined by a complex system of feedback
mechanisms. Time lags in the climate system’s response to changes imply that some degree of future
climate change is inevitable.

Climate change could have profound economic and social consequences and major threats include
sea level rise, enhanced erosion, salt intrusion, changes in agricultural yields and increases in
vector-borne diseases. On the other hand, response policies aimed at reducing emissions of
greenhouse gases will certainly also affect the economies of modern societies, since they are largely
dependent on fossil fuels. This dilemma is the main issue in developing policy strategies.

METHODOLOGY
Basic philosophy

It is virtually impossible to envisage an unequivocal optimal solution for the global climate change
problem. Moreover, it is not even ciear how the optimization problem should be conceptualized. The
numerous objectives, which might be taken into account when developing response strategies,
include goals such as economic efficiency, ecological sustainability and equity with respect to
inter-regional and inter-generational levels. In view of such a broad spectrum of objectives it would
seem a virtually impossible task to formulate an optimization problem for climate change. However,
since optimization problems can be formulated from various perspectives, they can be used to
explore the solution space in search of specific policy strategies.

Previous optimization studies in the field of climate change used highly parameterized models (see
e.g. Nordhaus, 1992, 1993; Tahvonen et al., 1993). These models were calibrated using the outputs of
(various) simulation models. However, since these optimization models are unable to take account of
the complex behaviour of the system, they can only yield valid scenarios for a certain subdomain
within the solution space. Although integrated assessment models also have their limitations, their
dynamic system approach enhances their ability to accommodate changes in decision variables.

When simplified models are used the mathematical problems involved in finding the optimum
which is to be preferred among all local optima (global optimum), can be rather intractable in
practice. Using more sophisticated models it might be impossible to find the global optimum. Since
evaluating the risks of climate change involves dealing with high degrees of uncertainty, the search
for such an optimum would be a waste of time and effort, and the quest for the global optimum may
be abandoned in good conscience.

Given the practical difficulties discussed above, it seems appropriate to discuss the deployment of
optimization techniques which may thus be used in combination with an integrated assessment
model in order to identify ‘optimal’ policy strategies. The aim of this study, which sets it apart from
other approaches is, therefore, to enable identification of local optima using a simulation model (in
this case an integrated assessment model) rather than searching for a global optimal solution with the
help of a highly parameterized model.

The heuristic

The general optimization problem considered in this article is a maximization of the objective
function F(x) which values the ‘state of the world’ over some predetermined time period subjected to
a set of constraints ¢, related to climate change which are preferential according to a climate change
policy.

+In this study a best guess value of 2.5 C is used (IPCC, 1992).
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Fig. 2. Heuristic of local scarch algorithm.

max F(x)
X
s.t. (1)

G(x,t) < ¢ (1) Vi t,

where x is a vector of decision variables (e.g. carbon tax policies, reforestation, investments in
renewable energy and recycling options) and ¢ denotes time. Since a simulation model is used for
optimizing this problem, it cannot be expressed in analytical formulas. In fact, the values of F(x) and
G,(x,t) are outputs of the simulation model given an input of x.

The heuristic which is deployed here to solve problem (1) is an adapted version of Multistart
(Janssen et al., 1992), a stochastic optimization method which involves several local searches} being
started at random points until a sto pping rule has been satisfied (Rinnooy Kan and Timmer, 1989).
In the general case, starting points are drawn from a convex and compact set which contains the
global optimum. In order to arrive at a solution within an acceptable runtime a number of
adaptations has been made to enable a simulation model to be used in conjunction with an
optimization approach.

1By local search we mean an optimization algorithm leading to a local optimum of a nonlinear optimization problem.
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The heuristic is based on the following two devices:

1. The start of a fixed number of local searches at selected starting points x,,. This enables a priori
knowledge, such as present or proposed (policy) scenarios, to be incorporated into the
optimization. The consequence of this approach is that independent of the degree of optimality,
the local optima found are improvements on present or proposed scenarios. Furthermore,
starting with only a fixed number of local searches will reduce runtime compared to a stochastic
approach like Multistart.

2. The use of a reduced version of the simulation model. A reduced model is defined here as a set of
equations that represent the core of the model. The manner in which the variables are related
remains the same as in the simulation model. A number of variables which are endogenous in the
original simulation model are treated as exogenous variables in the reduced model, and
consequently only a small number of the equations used in the original simulation model need to
be used. The optimization problem can be reformulated as follows:

max f(x,y)
X

s.t. (2)
g;(x.y.t) < (1) Vi.t,

where f(x.y) and g(x.y.t) are outputs of the reduced model and where x represents the decision
variables and y the exogenous variables. Observe that in this formulation y is not a variable but
represents the estimated outcomes of the simulation model. Such a reduced model is only valid for
a subdomain of the solution space. Therefore, the values of y will be updated several times during
the optimization.

The heuristic consists of a limited number of local searches (Fig. 2). Every local search is started in a
selected start scenario x,,. The simulation model is run using x, as input and estimated values for the
exogenous variables y of the reduced model. Using a local search routine, a focal optimum x; is found
for the problem formulated in (2). The simulation model is rerun to check whether the values of y
belonging to x, differ significantly from the values of y belonging to x;_,. If the values indeed differ
significantly, the local search routine is rerun using new values of y and starting in x;, and if they do
not, a local optimum of problem (1) is deemed to have been found.

CASE STUDY

Introduction

The Dutch National Institute of Public Health and Environmental Protection (RIVM) is currently
developing an integrated global assessment model entitled TARGETS (Tool to Assess Regional and
Global Environmental and health Targets for Sustainability) which links models from various
scientific areas (Rotmans et al., 1994b). This integrated system approach is designed to operational-
ize the concept of sustainable development from a global perspective for a simulation period from
1900 up to 2100. The model itself contains several submodels:

(1) a human system model, which describes the demographic and health state dynamics;

(i1) an economy/resources, model which describes the driving forces that create environmental
pressure (a submodel based on the World 4 modetl (Vries et al., 1993), itseif a successor to the
World 3 model developed by Meadows et al. (1974));

(iii) a land model in which the causes and effects of land use changes are incorporated;

(iv) a global environmental change model which describes the global environmental system (Elzen
and Rotmans, 1993) and which is an extension of the Integrated Model to Assess the
Greenhouse Effect IMAGE (Rotmans, 1990; Elzen, 1993);

(v) a model of socio-economic effects caused by a global change.

In this case study, a part of the TARGETS model is used to provide an illustration of the
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Fig. 3. Part of TARGETS model as used in this study.

optimization approach (Fig. 3): namely a preliminary version of the energy model, which is a part of
the economy/resource model and an experimental version of the global environmental change model
(Elzen, 1993). The basic structures of the separate models, which are interesting for this study, are
briefly described in the next section.

Model

The energy model. The energy submodel simulates the use of fossil fuels (coal, oil and gas)
and alternatives as well as simulating ways of substituting energy end-use for capital (Vries et al.,
1993). It incorporates some 130 equations and is divided into three parts: an energy demand model;
an energy transformation model; and a supply model. Depletion of stocks of fossil fuels is governed
by long-run supply curves. New investments are based on expected profitability. Energy prices are
derived from cost (supply-demand disequilibrium) which in turn is based on depletion and
learning-by-doing dynamics. If an alternative enters the market, its relative price will determine the
degree of market penetration.

The climate change model. The climate change model incorporates some 250 equations and
is a composite of autonomously-functioning models: an atmospheric chemistry model; a carbon
cycle model; a climate model; and an ozone model (Elzen, 1993). The carbon cycle is modelled as a
dynamic system whereby flows of carbon involving the atmosphere, oceans and terrestrial biosphere
are simulated. The methane concentration is derived from tlie global CH,-CO-OH cycle, while other
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non-CQO, trace gases are removed from the atmosphere at constant rates. The total change in
radiative forcing results in a global mean surface temperature change. The model also takes account
of a number of interactions which have a bearing on the relationship between stratospheric ozone
depletion problem and the climate change problem.

Problem formulation

Since climate change policy has numerous objectives, any formulation of an optimization problem
will necessarily neglect specific aspects. Previous optimization studies used various problem
formulations. Nordhaus (1992, 1993) maximizes the discounted sum of the utilities of per capita
consumption using a control rate on emissions as a decision variable. Given this goal, he
distinguishes several problems that differ in their constraints (e.g. no constraints, emissions stabilized
at 1990 levels and an upper limit of total temperature increase of 1.5 °C from 1900). Furthermore, he
considers a cost/benefit approach using a damage function related to temperature change. Tahvonen
et al. (1993) distinguish between a cost-oriented strategy (cost/benefit analysis) and a target-oriented
strategy (maximization of utility given temperature constraints) using emissions as decision
variables. The formulations used in these studies cover only a small part of the range of possible
problem formulations. They do not take account of ethical issues (Arge et al., 1982), uncertainties
(Dowlatabadi and Morgan, 1993) and multicriteria approaches.

A simplified representation of the complex problem of climate change is employed in this case in
order to enable the presentation of preliminary results yielded by the heuristic method. The results
are not relevant to policy at this stage in view of the preliminary state of the TARGETS model and
the limited number of experiments conducted. A more comprehensive analysis of the optimization
approach to a number of optimization problems is in preparation. This analysis will also include a
sensitivity analysis to estimate the consequences of the major uncertainties inherent in the
development of climate change response strategies. In this study, best-guess values are used for the
parameters within the TARGETS model.

The case under consideration is one in which economic activities are restricted by an
environmental constraint, since in the interests of sustainability a limited global mean temperature
increase is allowed. In the first instance, the absolute temperature limit of 2 °C above pre-industrial
global mean temperature (AGGG, 1990) is used, a level that can be seen as an upper limit beyond
which risks of considerable damage are expected to increase rapidly. Although the scientific
underpinning of this criterion is weak, it is nevertheless the best available.

Carbon tax policies are selected as one of the instruments by means of which this goal might be
realized. Such policies increase the prices of fossil fuels and, therefore, discourage their use while
making the use of alternative fuels more attractive. The increase in energy prices will lower the
demand for energy, causing a fall in economic output.

From an economic perspective, decision-makers might wish to meet the constraint with minimal
loss of economic activities. Maximization of industrial output.§ which is used here as an indicator for
Gross National Product, is used as the objective function.

For the study of carbon tax policies a time period between 1993 and 2100 is considered. Let z, be
the carbon tax level in the year t(t =1993,.. .2100). Let z=1[z],- 903, . .2100 D€ @ vector
characterizing the carbon tax policy. For simplicity’s sake, tax levels are assumed to change linearly
over fixed time intervals during the period under consideration. The following time intervals a.e used
according to IPCC (1992): [T,,7,], .. ,[T3T,].T, = 1993, T, = 2000, T, = 2025, T, = 2050,
T, = 2100. The tax level is assumed to change linearly during [7,,7, . ,] where we denote the tax
level in year T, by x,. The choice of x = [x,], -, together with the known value of the initial tax level
2z, at time 1993, determines tax level z,. From now on we would like to consider x,s as the decision
variables that determine z. Note that the input for the simulation model is a strategy z, which is
determined by x.

§Industrial output is the total value of goods produced by the industrial sector. It consists of consumption goods as well as
investment goods. In the present version of the energy model industrial energy demand is the only factor modelled. Energy
demand associated with agriculture, services and mining activities is aliowed for by reference to exogenous trends.
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Fig. 4. Inputs and outputs of simulation model as used in this study.

The problem is not defined in terms of analytical formulas, but rather in terms of outputs of the
simulation model (Fig. 4). The carbon tax is used as an input for the energy model which estimates
industrial output and fossil CO, emissions. These emissions in turn serve as inputs for the climate
assessment model which calculates the temperature increase.|| The optimization problem can now be
formulated as follows:

2100
max Y JO/(x)
X t=1993
St (3)
AT(x) < AT,..  t=1993,1994, .. .2100,

x>0
where:

10, = Industrial output (in bn 3);

AT, = Change in global mean surface temperature since 1900 (in °C);

AT,... = Maximum absolute global mean temperature increase since 1900 (in °C);
X = Carbon tax (in $/tC).

The reduced version of the simulation model consists of the energy model and a number of equations
borrowed from the climate change model. Since a preliminary version of the energy model is the only
version available, no reduced version of this part of the model has yet been derived. Only six
equations from the climate assessment part of the simulation model were used to estimate the
temperature change (see the Appendix for details). These equations incorporate five variables
borrowed from the simulation model which are treated as exogenous in the reduced version.

The solution space can be further tightened, by including a ‘rate of change in global mean
temperature’ constraint. According to AGGG (1990) a maximum rate of increase of 0.1°C per
decade is allowed, which is still admissible for adaptations of ecosystems. Because of delays in the
climate system, the ‘rate of change in temperature’ target cannot be reached in the next decades.
Therefore, the constraint on the relative change is set from 2010 to 2100.

[iOther trace gases, both from fossil fuel combustion and other anthropogenic sources are assumed to follow the
Business-as-Usual scenario (no climate policy implemented).
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2100
max . 10,(x)
X 1=1993
s.t. (4)
AT, (x) < AT_, t =1993,1994, . . ..2100,
dAT.(x) < dAT_,, t =2010,2011, .. .,2100
x>0
where:
dAT, = Rate of change in global mean surface temperature (in “C per decade);

dAT,,,, = Maximum rate of global mean temperature increase per decade (in °C per decade).

Results

Introduction. Two carbon tax reference scenarios were defined for a number of experiments
with the heuristic. For each of the scenarios a local search¥ is started. The first scenario is the
Business-as-Usual scenario (IPCC, 1991), which is a continuation of current trends. A policy
scenario based on the Accelerated Policies scenario (IPCC, 1991), which involves a shift towards
non-fossil fuels, is adopted as the second reference scenario. The carbon tax scenarios are given in §
per tC for the years 2000, 2025, 2050 and 2100 (see also Section 4.3):

Business-as-Usual scenario (BaU) xo=1[0. 0, 0, 0];
Accelerated Policies scenario (AP) xo = [0, 36, 51, 51].

These scenarios envisage an average annual growth rate of industrial output for the period from 1993
till 2100 of 1.9 and 1.2%, respectively, while the average global temperature increase in 2100 relative
to 1900 is 3.6 and 2.1 “C, respectively.

‘Change in temperature’ target. |f the ‘change in temperature’ constraint is to be met no
carbon tax policy would have to be implemented until 2025, after which the (local) optimum carbon
tax policy would feature an increasing tax level (Fig. 5). This tax policy causes a lower growth rate in
industrial output because of the increase in fossil fuel prices by 3-10 times which increases energy

“The Powell method is used as local search routine (Press er al., 1988).



10 M. Janssen et al.-Response Strategies

prices by about 40%. This increase lowers energy demand and causes extra investments in the energy
sector to switch to alternative fuels. This results in an average growth rate in the optimal solution of
about 1.3% per year, which is about 0.5% per year lower than in the Business-as-Usual case.

Nordhaus (1992) found that an optimal carbon tax path for a 1.5°C maximum temperature
increase constraint implies increases to around 200 $/tC as early as 2000 and to 700 $/tC by 2050
before levelling off at about 800 $/tC in 2100. These tax levels are much higher because of a lower
uppervalue constraint and because the use of alternatives (e.g. biofuels) is not associated with any
physical constraints in the preliminary version of the energy model as used in this study.

The value of the objective function is about 15% higher for the optimal solution compared with
that of the Accelerated Policies scenario, which narrowly fails to meet the ‘change in temperature’
constraint. Although the average temperature increase will be below 2 °C for this local optimum
(Fig.9) the ‘rate of change in temperature’ target is still violated for several decades after 2010 (Fig.
10).

‘Rate of change in temperature’ target. 1f a constraint is set on a rate of temperature increase
from 2010 till 2100 of 0.1 °C per decade, the carbon tax policy will change significantly (Fig. 5). The
tax already increases fossil fuel prices by about 4-10 times by 2000. By changing the fuel mix the
average energy price increase is about 50%. The high tax levels necessary to meet the constraint,
significantly reduce the growth of industrial output. This growth rate decreases by 1.0% per year
compared to the Business-as-Usual case (Fig. 6).

20

$
times 1E+12

1990
time in years 2100

Fig. 6. Industrial output.

Figure 10 shows that some latitude is still left to meet the ‘rate of temperature increase per decade’
constraint. This is caused by the fact that fuel use allocation is based on relative prices and not on cost
minimization. Therefore, it may happen that if carbon tax falls after 2050 the investment costs
increase in order to re-introduce fossil fuels.

Characteristics of the optimization approach. The heuristic approach is compared with the
case in which the simulation model is run for each function evaluation of the local search routine.
Using the heuristic, the simulation model need only be run several times (Tables 1 and 2). This means
that convergence** of the exogenous values y of the reduced model occurs only in several iterations.
The number of times the simulation model is run when a straightforward local search is used is much
larger. The number of times the reduced model is run in the heuristic is larger than in the

**In fact, convergence of the values of the exogenous variables y cannot be proved. However, the difference between y from
two iterations remains within the tolerance level (1%) after several iterations.
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straightforward local search, because the heuristic consists of several local searches in order to find
the correct values of y. However, because the reduced model requires a much smaller amount of
runtime, the heuristic finds the optima in less runtime than the straightforward case.

Note that a priori knowledge seems to reduce the number of function evaluations, because starting
with an x, equal to the BaU scenario will in most cases require more function evaluations than
starting with an x, equal to the AP scenario.

The fact that the solutions are not all the same for each problem may be caused by the fact that
different local optima may exist (Table 1) and because a minor error may be made while using the
reduced version (Table 2).

CONCLUSIONS

It is a utopian dream to suppose that an optimal response strategy for climate change can be found,
but optimization techniques can nevertheless be a helpful guide for the development of response
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strategies. In contrast to other studies, which use highly parameterized models, this paper presents an
optimization approach which uses an integrated assessment model in order to search for
(sub)optimal strategies. The approach is based on local searches started in selected reference
scenarios. To reduce the number of runs of the simulation model, a reduced version of the simulation
model is used. By updating values of the exogenous variables of the reduced model during the local
search, a solution is found for the original problem. Indeed, although this approach will probably not
succeed in finding the global optimum, better solutions than present policies can always be found by
starting in chosen reference scenarios.

Some first experiments are derived using the climate change modelling part of the preliminary
version of the TARGETS model. A more comprehensive study of properties of the heuristic is in
preparation, including a sensitivity analysis of the optimal response strategies. A major topic for the
near future will be the use of the heuristic for several types of problem formulations including the
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Table 1. Solutions featuring a change in absolute temperature constraint. For every local search the value of the
objective function (10, in $ billions) is given as well as the optimal tax policy (x in $/tC). This is given for the heuristic,
which uses simulation models to update exogenous variables of the reduced model, as well as for the straightforward
local scarch, in which the simulation model is simply run for each function evaluation

Results/ref. scenario BaU AP

Heuristic

Xi0 890331 893957

x [0, 0. 151, 162] [0, 0, 141, 193]
No. runs reduced version 14780 4001

No. runs simulation model 18 5

Straightforward local search

210 893250 876343
x [0, 0, 139, 191) [0, 7, 106, 206]
No. runs simulation model 1895 1586

Table 2. As in Table ! including solution for the rate of temperature increase constraint

Results/ref. scenario BaU AP

Heuristic

zI0 659097 659110

X [120, 114, 247, 354] [120, 114, 247, 355]
No. runs reduced version 5280 3853

No. runs simulation model 7 6

Straightforward local search

zio 646558 646546
X [t61. 118,272, 381] [161, 118, 273, 383]
No. runs simulation model 746 2796

inclusion of uncertainty. Although this article has introduced the approach by referring to relatively
few experiments it is expected that this approach is a first step towards a more comprehensive and
sophisticated analysis of climate change response strategies.
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APPENDIX: REDUCED VERSION OF THE CLIMATE CHANGE MODEL

The reduced version of the simulation model is based on equations of the simulation model itself (Elzen, 1993) and represents
the core of the model designed to estimate the global mean temperature change. The variables of the climate change model,
which are treated as exogenous variables in the reduced version, are not very sensitive to changes in the carbon tax policy in a
subdomain of the solution space. The values of these exogenous variables are updated several times during the optimization to
derive a solution that is consistent with the simulation model.

The atmospheric CO, concentration is determined by fossil fuel combustion, flux of CO, from the terrestrial biota, uptake
of CO, by the oceans and the net ecosystem production flux, and can be modelled according to the following equation (A.1)
{(Rotmans, 1990). The fluxes NFSEM. FOVS,and TNEP are treated as exogenous variables in the reduced version. Within the
simulation model, they are related to a number of processes:

dpCO, (1) . o p .
a4 = atmcf (FSEM(1) + NFSEM(1) — FOVS(t)— TNEP(t)), {A.1)
where:
pCO, = atmospheric CO, concentration (ppmv);
atmef = factor that converts emissions of CO, into concentrations ( = 0.471 ppmv/GtC);
FSEM = fossil fuel combustion flux (GtC/yr);
NFSEM = non-fossil carbon flux of CO, due to human disturbance (GtC/yr);
FOVS = flux from the atmosphere to oceanic mixed layers (GtC/yr);
TNEP = carbon flux by total net ecosystem production (GtC/yr).

Changes in the radiative forcing of the climate system, AQ are caused by changes in the concentration of radiative active trace
gases. According to Ramanathan et al. {1979) the following relation approximately holds for the change in the radiative
forcing by CO, emissions:

AQ; . co, CO, (1)
AQeolll) = ;. co, In pL, ‘ (A2)
In(2) pCO,
where:
AQco, = change in radiative forcing by CO, (W/m?);
AQ, « co, = radiative forcing for a doubled CO, concentration (equal to 4.3 W/m?);
pCO,;, = initial CO, concentration (294.0 ppmv).

The total change in radiative forcing can be written as:
AQ([) = AQ("()J([) + AQnon(‘O;“)' (A.3)

Besides the radiative forcing of other greenhouse gases. the exogenous variable AQ,,.co, also incorporates the feedbacks of
sulphur and stratospheric ozone depletion.
The change in temperature of the ocean mixed layer AT, is related to this radiative forcing in the equation
dAT, (1) B AQ(r) — ZAT (1) — AF (1)
de C

. (A4)

m

where:

4 = climate sensitivity parameter (is 1.72 W/m?-C);
AF = change in heat flux at the bottom of the mixed layers (W/m?);
C,, = bulk heat capacity of the ocean mixed layer (is 10.97 Wy/m?“C).

In equilibrium, supposing an instantaneous response of global temperature to external radiative forcing, the temperature
change can be formulated as:

A
AT ) = 220 (A.S5)

/.

The temperature change of the atmosphere over land can then be calculated. Assuming that the temperature change of the
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atmosphere over the ocean equals the temperature change in the mixed ocean layer, the surface-air temperature change can be
expressed as:

_ f2AT (1) + kAT, (1)

ATt A6
(t) ek (A.6)
where:
AT = change in surface-air temperature (*C):
[ =fraction of the globe covered by land:
k = coefficient that represents the heat transfer between land and ocean.

Variables which are used as exogenous variables in the optimization approach are therefore NFSEM, FOVS, TNEP,AQ o,
and AF. Note: FSEM is an output of the energy model.
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