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Abstract

Information sharing is a critical task for group-living animals. The pattern of sharing can be modeled

as a network whose structure can affect the decision-making performance of individual members as

well as that of the group as a whole. A fully connected network, in which each member can directly

transfer information to all other members, ensures rapid sharing of important information, such as a

promising foraging location. However, it can also impose costs by amplifying the spread of inaccur-

ate information (if, for example the foraging location is actually not profitable). Thus, an optimal net-

work structure should balance effective sharing of current knowledge with opportunities to discover

new information. We used a computer simulation to measure how well groups characterized by dif-

ferent network structures (fully connected, small world, lattice, and random) find and exploit resource

peaks in a variable environment. We found that a fully connected network outperformed other struc-

tures when resource quality was predictable. When resource quality showed random variation,

however, the small world network was better than the fully connected one at avoiding extremely

poor outcomes. These results suggest that animal groups may benefit by adjusting their informa-

tion-sharing network structures depending on the noisiness of their environment.
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Social animals often share information relevant to foraging behav-

ior, habitat choice, and other critical decisions (Krause and Ruxton

2002; Gordon 2010; Seeley 2010; Sumpter 2010). The pattern of

sharing can be modeled as a network in which nodes are group

members and edges connect individuals that share information with

one another (Wey et al. 2008; Krause et al. 2009; Blonder and

Dornhaus 2011; Tokuda et al. 2012; Waters and Fewell 2012;

Mann et al. 2012; Cantor and Whitehead 2013; Greening et al.

2015; Pinter-Wollman 2015; Brent, 2015). Sharing may occur via

signals produced by natural selection to convey information (e.g.,

alarm calls (Hollén and Radford 2009), recruitment to food sources

(Czaczkes et al. 2015), or fertility signals (Le Conte and Hefetz

2008)) or by incidental cues that animals use opportunistically to

guide their behavior (e.g., imitating the actions of a successful for-

ager (Galef and Giraldeau 2001) or responding to the movements of

a fellow group member (Meunier et al. 2006; Ward et al. 2008)).

The structure of an information-sharing network can affect the deci-

sion-making performance of individual members as well as that of

the group as a whole (Krause et al. 2009; Sih et al. 2009; Croft et al.

2011; Bode et al. 2012; Pinter-Wollman et al. 2014). For example,

harvester ant colonies Pogonomyrmex barbatus have a minority of

workers that interact significantly more often with others in the nest

(Pinter-Wollman et al. 2011). This skewed distribution of connec-

tions expedites information flow, enhancing the colony’s ability to

make fast and accurate decisions. Analysis of animal social networks

can aid in deciphering underlying mechanisms of collective decision

making (Wey et al. 2008).

Animal groups can vary in the degree to which each member is

directly connected to others. For example, a group may be relatively

well mixed, with all members equally likely to interact with one
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another, or it may be subdivided into clusters based on relatedness,

age, or sex, with members more likely to interact within than across

clusters (Krause et al. 2014). Methods of communication may also

vary from broadcast signals that rapidly spread information

throughout the group (e.g., Blumstein and Daniel 2004), to more

local signals detected by only one or a few members (e.g.,

Richardson et al. 2007). The resulting differences in network struc-

ture are likely to affect how well individuals gather accurate infor-

mation about their environment. Insofar as individuals benefit from

the rapid spread of important information, we might expect the best

network structure to be a fully connected one, in which each mem-

ber can directly transfer information to all other members. Such a

network, however, would also rapidly spread inaccurate informa-

tion that can result from individual assessment errors, leading group

members to make suboptimal choices. Thus, an optimal network

should balance sharing of currently available knowledge with

opportunities to gather new information for a more accurate assess-

ment of the environment. In fact, computer simulations show that

less connected network structures can collectively outperform more

connected ones in complex environments where the best option is

hard to discover (Lazer and Friedman 2007; Mason et al. 2008;

Mason and Watts 2012). This is because a fully connected network

allows the rapid spread of information about easily discovered sub-

optimal options, settling everyone’s choice before the best option be-

comes known. In contrast, slower information spread in sparser

networks makes them less likely to get stuck on suboptimal local

peaks before finding the global optimum. These results suggest that

the relative performance of different network structures depends

highly on the environment.

In this study, we examined how social network structure affects

a group’s ability to discover resource peaks. We tested idealized

structures that differ in features important to real animal social net-

works, particularly the degree of local clustering and the number of

fellow group members directly contacted by each individual (Pinter-

Wollman et al. 2014; Krause et al. 2014). Our goal was to explore

the effects of these general network attributes on a group’s ability to

thoroughly explore its environment. Although we did not model a

specific biological context, the problem we examined is similar to

that faced by a social group looking for food, water, nesting sites, or

other resources that are distributed unevenly in the environment.

In addition to resource distribution, we further explored the role

of resource predictability. If animals make error-prone assessments

of resource quality, or if the environment varies randomly over time,

then an individual’s assessment of current gains may have limited

ability to predict future gains. For example, consider 2 foraging

areas, one of which is more profitable than the other. When future

gains are perfectly predicted by current experience, it is relatively

easy to differentiate them, because gains at one area always exceed

those at the other. When gains are less predictable, however, it be-

comes hard to discriminate between sites because the inferior one

can sometimes be more profitable than the superior one. This could

affect the value of information sharing and thus the efficacy of dif-

ferent network structures in maximizing resource acquisition. To

test this possibility, we manipulated environmental predictability

and investigated how it affected the performance of different net-

work structures. We first measured collective performance of 4 dis-

tinct network structures exploring 3 different payoff distributions in

a perfectly predictable environment. We then repeated the same ana-

lysis in an environment made less predictable by the addition of as-

sessment error.

Materials and Methods

Model description
We follow the Overview, Design concepts, and Details (OOD)

protocol, a standard format for describing agent-based models

(Grimm et al. 2006; 2010). Models were created in Netlogo (version

5.1.0) (Wilensky 1999) and are available at OpenABM (https://

www.openabm.org/model/4581/version/1/view).

Purpose
The purpose of this study was to explore the relative performance of

different network structures in situations where group members re-

ceive unreliable information about their environment. Our model

was based on the self-, social-, and exploration-based choices

(SSEC) model developed by Goldstone et al. (2008) and Mason

et al. (2008). Our methods (described below) followed theirs, except

where noted.

Network types
We used 4 types of networks: fully connected, small world, lattice,

and random (Figure 1). In the fully connected network, every agent

was connected to every other agent. In the small world and lattice

networks, all agents were connected to their immediate 2 neighbors,

and some agents were also connected to a third agent at either a far

distance (small world) or a close distance (lattice). In the random

network, agents were connected randomly. Each network had 10

agents and a total of 12 connections, except the fully connected net-

work, which had 45 connections.

Payoff distributions
In each round, an agent chose a number between 0 and 100. Each

number was associated with a specific payoff according to 1 of 3

continuous payoff distributions: unimodal, trimodal, and needle

(Figure 2). Each distribution had a single global maximum, and thus

Figure 1. Examples of the 4 network structures examined. Each has 10 agents

and 12 connections, except for the fully connected network, which has 45 con-

nections. Circles and lines represent agents and connections, respectively.
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1 “correct” choice, but the trimodal and needle distributions had

additional lower peaks. All 3 distributions can be mathematically

described as:

f xð Þ ¼ a1exp � b1 x� c1ð Þð Þ2
� �

þ a2exp � b2 x� c2ð Þð Þ2
� �

þ a3exp � b3 x� c3ð Þð Þ2
� �

(1)

The parameter values for each distribution are summarized in

Table 1. The unimodal, trimodal, and needle payoffs represent suc-

cessively greater challenges to discovery of the best resource: for the

unimodal distribution, agents will find the peak as long as they

move up a gradient of performance. For the trimodal distribution,

they face the risk of getting stuck on a local peak and missing the

global maximum. For the needle distribution, the global maximum

is still harder to find because it is much narrower than the competing

local maximum.

In the first experiment, the payoff function determined the exact

payoff received by an agent choosing value x. In the second

experiment, the function’s output was added to a noise term drawn

from a normal distribution with mean zero and standard deviation

10. This random component modeled resource unpredictability re-

sulting from assessment noise or environmental change over time.

Agent strategies
On every round, each agent probabilistically chose 1 of 3 strategies:

Stay: The agent chooses the same number it did on the previous

round.

Best: The agent chooses the number that paid the most among its

directly connected neighbors in the previous round.

Random: The agent chooses a number randomly.

In the first round, all agents used the random strategy. As the

simulation progressed, agents updated their probabilities of choos-

ing each strategy according to their own payoff history. That is, the

higher the payoffs previously earned using a given strategy, the more

likely that strategy was to be used again. Probabilities were calcu-

lated from a baseline of 45% for each of the first 2 strategies and

10% for the third.

Process overview and scheduling
Each simulation started with creation of 1 of the 4 network types. It

then progressed through 15 rounds, during which each agent in the

network chose a decision strategy and then used it to make a choice.

After each round, the agents updated their strategy probabilities ac-

cording to the outcome of their choice. After every 15-round session,

a new network was generated and all the parameters were re-initial-

ized. For each network structure, 500 15-round simulations were

run for each of the 3 payoff distributions.

At the end of each simulation, we measured the group’s perform-

ance by counting the number of agents that came within a specified

distance of the global maximum. This distance was 8 for the uni-

modal and trimodal distributions and 4 for the needle distribution.

We conducted 2 experiments. In the first experiment, there was

no noise, and we measured performance of all 4 network types for

all 3 payoff distributions. In the second experiment, we added noise

and similarly measured network performance.

Statistical analysis
Data were analyzed via Kruskal–Wallis, Nemenyi, Mann–Whitney–

Wilcoxon, and v2 tests, as detailed in the results. The statistical

package R (v. 3.1.1) was used for all analyses.

Results

In the absence of noise, the fully connected network outperformed

the other networks for the unimodal and trimodal distributions and

performed statistically indifferently for the needle distribution

(Figure 3A). That is, agents in the fully connected network reached

Figure 2. The 3 payoff distributions used in simulations. All are described by

Equation 1, using different parameter values (given in Table 1).

Table 1. Parameters used in Equation 1 to produce the 3 payoff

distributions

Distribution a1 a2 a3 b1 b2 b3 c1 c2 c3

Unimodal 50 0 0 0.07 0 0 60 0 0

Trimodal 40 40 50 0.07 0.07 0.07 20 45 70

Needle 30 70 0 0.07 0.9 0 26 67 0

Parameters ai, bi, and ci determine, respectively, the payoff for peak i, the vari-

ance around the peak, and its position. Parameter b is inversely related to

variance, so larger values indicate narrower peaks.
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Figure 3. Performance of each network for 3 payoff distributions in environments where noise was absent (A) or present (B). In the noise-free environment, the

fully connected network (labeled “Full”) outperformed the others in the unimodal and trimodal distributions, and tied the others in the needle distribution. In the

noisy environment, the fully connected network similarly outperformed the others, except in the trimodal payoff distribution, where the small world network did

as well, on average. Different letters indicate significant differences between networks (Kruskal–Wallis test followed by multiple comparisons using Nemenyi

tests, P<0.05). Boxes indicate the lower and upper quartiles. Horizontal lines within boxes indicate the median, whiskers extend to the 1.5 interquartile range

from the box, and open circles are outliers.

210 Current Zoology, 2016, Vol. 62, No. 3



the global payoff maximum at least as often as agents in the other

networks, regardless of the distribution. As expected, performance

varied across payoff distributions, with the highest proportion of

agents finding the peak in the unimodal distribution, a somewhat

lower proportion doing so in the trimodal distribution, and a much

lower proportion succeeding in the needle distribution. Agents most

often used the Best strategy, and very few used the Random strategy

(Figure 4A). Payoff distribution had little effect on strategy choice,

except that agents were more likely to choose the Stay strategy

under the trimodal distribution. Strategy choice varied little among

the different network types (Figure 4A).

We performed the second experiment to determine whether the

dominance of the fully connected network would persist in a noisy

environment. The results showed that it did, except for the trimodal

payoff distribution, where the small world network did about as

well (Figure 3B). Looking more closely at the trimodal case, the 2

network types had the same median performance (Nemenyi test:

q¼1.9, P¼0.20), but a significantly different distribution of per-

formance (Chi-squared test: v2¼211.0, df¼9, P<0.01) (Figure

5B). The fully connected network often performed very well—in

one-third of simulations over 80% of agents reached the global

maximum. However, it also often missed the peak completely—in

another one-third of simulations fewer than 10% of agents reached

the peak. In contrast, the small world network rarely performed at

either extreme. Instead, in over two-thirds of simulations 50–80%

of agents reached the peak. These distributions are different from

those seen in the environment without noise, where both network

types showed similar left-skewed frequency distributions (Figure

5A). Strategy choice followed the same pattern seen in the absence

of noise (Figure 4).

For the noisy environment, we also looked at how performance

changed over 15 rounds. With the unimodal payoff distribution

(Figure 6A), all networks showed improved performance over time,

with the fully connected network improving more rapidly at first

but reaching a plateau after 5–6 rounds. The small world network

eventually caught up in performance, and the lattice and random

networks lagged somewhat behind. A similar pattern was seen with

the trimodal distribution, but the plateau was lower and was

reached more slowly (Figure 6B). For the needle network, all net-

works started at a low level of performance and declined similarly

over the 15 rounds (Figure 6C).

Discussion

The principal result of this study is that a fully connected network is

always at least as good as other network structures at maximizing

Figure 4. Decision strategies used by agents in environments where noise was absent (A) or present (B). Bar heights show the proportion of all decisions made

according to the Best (light gray), Stay (medium gray), and Random (dark gray) strategies, for each combination of payoff distribution and network type. For each

combination, the number of times each strategy was used was summed over all agents, rounds, and runs and the proportion of each strategy was calculated.

The first round (when all agents were required to use the Random strategy) was not included in the calculation.
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payoff, regardless of how resources are distributed in the environ-

ment. This differs from the findings of earlier studies that used the

same network topologies and payoff distributions examined by us

(Goldstone et al. 2008; Mason et al. 2008). Those studies reported

that groups are better at finding obscure global peaks when their in-

formation-sharing networks have high levels of local connectivity:

i.e., clusters of individuals that are well connected with each other

but weakly connected to members of other clusters. This clustering

is argued to enhance exploration by dividing the group into rela-

tively independent subsets that more effectively search the space of

possible solutions. That is, each subset has time to find distinct solu-

tions rather than being rapidly converted to the first local peak that

is found. Thus, according to these studies, the fully connected net-

work performs best for the unimodal payoff, in which the single

peak can be easily found with relatively little exploration. The more

clustered small world network does best for the more challenging

trimodal distribution, whereas the highly clustered lattice network

does best for the needle distribution, where the hard-to-find global

maximum places a premium on thorough exploration.

Our simulations did not replicate the pattern seen in these previ-

ous studies (Goldstone et al. 2008; Mason et al. 2008). Instead we

found that the fully connected network, on average, performed as

well as or better than the other networks for all distributions. We

saw a similar pattern to the earlier studies for the unimodal case, but

Figure 5. Frequency distribution of performance (i.e., proportion of agents at

the global maximum) when noise was absent (A) or present (B). When noise

was absent, both the fully connected and small world networks showed left-

skewed frequency distributions, though the patterns were different

(v2
9¼ 244.0, P< 0.01). When the noise was present, however, the fully con-

nected network showed a bimodal distribution, with peaks at very high and

very low performance. In contrast, the small world network showed a single

peak at moderately high performance (v2
9¼ 211.0, P< 0.01). Figure 6. Performance of the 4 network structures over 15 rounds of search in

a noisy environment, for 3 different payoff distributions: (A) unimodal, (B) tri-

modal, and (C) needle. For the unimodal and trimodal distributions, the fully

connected network initially performed better, but the small world network

eventually caught up. In the trimodal distribution, however, the small world

network showed less variation in performance than did the full network. For

the needle distribution, all networks performed similarly, and declined in per-

formance over time. Boxes indicate the lower and upper quartiles, and hori-

zontal lines within boxes indicate the median. Brackets indicate the range,

except for outliers (omitted for clarity).
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a very different outcome for the needle distribution, where all net-

work types performed at a similarly low level. For the trimodal case,

we saw some advantage for the small world network, but different

from that seen in the previous work, which found that the small

world network rose in performance more rapidly in early rounds. In

our simulations, the median performance of the small world net-

work did not exceed that of the fully connected network at any

point. Instead, we found that it achieved a lower variance in per-

formance, consistently achieving a moderately good outcome with-

out either of the extremes that were common for the fully connected

network. In short, the fully connected network achieved the best

average performance for all distributions, but the small world net-

work showed lower variance in performance for a more challenging

payoff distribution (trimodal).

We attribute the difference between our results and those of

Goldstone et al. (2008) and Mason et al. (2008) to their use of dif-

ferent distributions of local and global maxima for different net-

works. Specifically, they placed the global maximum for the small

world network in the middle of 2 local maxima and relatively close

to them. Therefore, when agents reached the local maxima, they

could easily move on to the global maximum. In contrast, the peak

for the fully connected network was far from the local maxima.

Agents were therefore more likely to get stuck at the isolated local

peak. Because we used the same payoff distribution for all networks,

our results did not confound network effects with distribution

effects.

Despite the difference between our results and those of the ear-

lier studies (Goldstone et al. 2008; Mason et al. 2008), our findings

also support some advantage of greater clustering in environments

that reward exploration. When local maxima were present, the fully

connected network performed very badly a significant proportion of

the time. This can be interpreted as too-rapid propagation of the dis-

covery of a local peak, cutting short the group’s search and prevent-

ing discovery of the best solution (Lazer and Friedman 2007). This

effect was most obvious for the trimodal distribution. An even more

pronounced effect might have been expected for the needle distribu-

tion, with its better-hidden global maximum. This was not the case,

but this may have been due to the extremely low performance of all

networks for this distribution, making it difficult to distinguish rela-

tive performance.

Besides the interaction between payoff distribution and network

structure, our other major finding was the importance of assessment

noise. In the absence of noise, the small world network showed

clearly inferior performance, meaning that groups gained no advan-

tage from the more thorough exploration afforded by highly local

connections. High locality comes at the cost of slower propagation,

because each agent has limited connectivity with agents outside its

local group, and thus cannot rapidly learn if an outsider finds the

best solution. When assessments are not obscured by noise, groups

do better to rapidly share information in a fully connected network,

regardless of payoff distribution.

Our finding of a strong influence of assessment noise implies

that animal groups face context-dependent trade-offs in the best

way to share information. When assessment noise is low, thorough

information sharing over a dense network may be best. When noise

is high and getting trapped on a suboptimal local maximum is a dan-

ger, then a less-connected, small world network may be better re-

warded. The latter may be especially the case when poor outcomes

are disproportionately costly, making it better to reduce variance of

outcomes, even at the cost of sometimes falling short of the very best

performance (Kacelnik and El Mouden 2013).

If the best network structure depends on environmental context,

then we predict that animal groups may adaptively change their behav-

ior to achieve different structures according to their current circum-

stances. Several species show evidence of different network structures

across years or seasons (Smith et al. 2010; de Silva et al. 2011; Brent

et al. 2013; Godfrey et al. 2013). It is not clear whether these changes

have anything to do with information sharing, but there is evidence that

an individual’s place within a social network can influence its ability to

acquire new information about its environment (Lusseau 2007; Aplin

et al. 2012; Brent 2015). Our results suggest that future research would

benefit from considering how network structure as a whole influences

information gathering, and whether this structure varies adaptively ac-

cording to environmental predictability.
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