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6.1 INTRODUCTION 
 
Most natural resource systems used by multiple individuals can be classified 
as common-pool resources. Conventional economic theory predicts that when 
agents have free access to a common-pool resource they will consume 
ecosystem services to the point where private costs equal the benefits, 
whereas externalities are imposed on the rest of the community. This can lead 
to the well-known tragedy of the commons (Hardin, 1968). Many laboratory 
experiments have been performed to study this phenomenon. Even in the 
simplest case of these experiments, without communication between the 
participants, anomalies where found that are not in line with conventional 
economic theory, which is non-cooperative game theory (Ostrom et al., 
1994).  

Conventional theory predicts that players in a non-cooperative game will 
follow a Nash equilibrium. In none of the reported experiments on common-
pool resources was such a Nash equilibrium observed. Furthermore, the total 
consumption of the common-pool resource fluctuates in time (Ostrom et al., 
1994). 

Many studies have focused on this phenomenon. Dudley (1993) analysed 
individual data from Indiana University on resource-use and classified most 
of the participants according to the strategy they used, such as non-
cooperative and cooperative behavior. Deadman (1997) developed a 
simulation model based on artificial intelligence, which reproduced patterns 
similar as observed in the laboratory experiments. Casari and Plott (2000) 
report laboratory experiments that are consistent with their proposed 
analytical model that includes heterogeneity of social orientation among the 
agents. 
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The original aim of this chapter was to explain the phenomenon in 
question as originating from heterogeneity in Social Value Orientations 
(SVO’s) of the participants, using the consumat approach, a multi-agent 
simulation approach from social psychology (Jager, 2000; Jager et al., 2002) 
as a research tool. Indeed differences in SVO explained the observed 
aggregated data. However, when we got hold of individual data, our model 
was not able to explain individual patterns as observed in the various 
laboratory experiments. Therefore, we broaden this chapter, and use the 
common-pool resource experimental data for a discussion on the validation 
of multi-agent models by using laboratory data. 

 The chapter is built up as follows. In the next section the original 
common-pool resource experiments are discussed, as well as relevant other 
studies that tried to explain the observations. In Section 6.3 we discuss Social 
Value Orientations, then we provide a brief overview of theories on decision 
making and introduce the consumat approach. The consumat implementation 
of the common-pool resource problem is discussed in Section 6.6, and the 
experiments with the model in Section 6.7. Section 6.8 discusses the 
problems which have arisen during the simulation experiments and propose 
new additional laboratory experiments. The chapter closes with a discussion 
on the relation between laboratory research and multi-agent modeling. 
 
 
6.2 COMMON-POOL RESOURCE EXPERIMENTS 
 
Ostrom et al. (1994) developed a series of laboratory experiments in an effort 
to understand the degree to which predictions about individual and group 
behavior, derived from non-cooperative game theory are supported by 
empirical evidence. The baseline experiments as described in Ostrom et al. 
(1994) form the basis for the simulation experiments in this chapter. In these 
baseline experiments, eight subjects were presented with a situation in which 
they had to choose to invest tokens in two alternatives, or markets. Market 
one, a safe alternative, provides a constant rate of return on investments. 
Market two provides returns that vary in relation to the total group 
investment and the investment of the individual. Market two is the common-
pool resource. Ostrom et al. (1994) performed experiments for two amounts 
of tokens, namely ten tokens and 25 tokens. The eight subjects had 
information about the functional relationship of the two markets, derived the 
aggregated level of token investments after each round, and were not allowed 
to communicate with other subjects. 

Each individual i has a number of e tokens each round. An amount of xi is 
invested in market two, which functions as a collective resource, and an 
amount of e - xi is invested in market one. The payoff function is: 
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According to this formula, the payoff of someone investing all his ten tokens 
in market one (xi = 0) is 0.05*e, thus 0.5 tokens. Investing a part or all of the 
tokens in market two (xi > 0) yields an outcome that depends on the 
investments of the other players. For example, when player i invests all his 
ten tokens in market two, whereas all the other players invest in market one, 
player i will receive 2.05 tokens, considerably more than what market one 
yielded. However, when all players invest ten tokens in market two, the 
yields are – 0.2 tokens, thus implying a loss. In the case when the players 
have 25 tokens at their disposal, they may experience even larger losses when 
they all invest a lot in market two. 

If the players behave according to the non-cooperative game theory, they 
would derive the Nash equilibrium where each player maximizes payoff 
given the strategies chosen by the other players. The Nash equilibrium for 
both e = 10 and e = 25 is equal to eight tokens invested in market two.  

If the group act as one agent, they should fully cooperate to maximize 
their outcomes. In this case their total investment in market two should be 36 
tokens, which implies an investment level between four and five tokens per 
individual. In order for perfectly rational individuals to make themselves 
better off by achieving the optimal group returns, each individual would have 
to substantially cut back his or her investment. However, when all other 
players restrain their investments in market two, it would be very tempting 
for a player to invest more in market two as this would increase his outcomes 
significantly. Once individuals give in to this temptation, other individuals 
may follow, and the group may reach a Nash equilibrium, thereby lowering 
the group performance. 

Looking at the outcomes of different group strategies, we see that a fully 
cooperative strategy yields the highest outcomes for the group as a whole 
(Table 6.1). The Nash equilibrium yields higher outcomes than investing 
exclusively in market one. 
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Table 6.1: Individual earnings given different group strategies. e can be ten 
or 25 (when e-25 dividing u(x) is divided by 2) 
 

Earnings/subject e = 10 e = 25 
Group maximum (Σxi = 36) $0.91 $0.83 
Nash equilibrium (xi = 8) $0.66 $0.70 
No investment in CPR (xi = 0) $0.50 $0.63 

 
The performance of a group can be measured as the extra earnings by 
investing in market two as a percentage of the maximum extra returns. The 
Nash equilibrium level of investment leads to a level of 39 (=(0.66 -
0.50)/(0.91 - 0.50)) percent of this maximum. 

Many laboratory experiments have been conducted on finitely repeated 
CPR dilemmas. The central question was to what degree the empirical data 
support the outcomes as hypothesized by non-cooperative game theory for 
finitely repeated, complete information games (Ostrom et al., 1994). At the 
aggregate level the results seem to converge to a Nash equilibrium. But 
instead of monotonic convergence to the predicted equilibrium a different 
repetitive pattern was observed. The net yield drops toward zero and then 
rebounds as subjects reduce the level of investment in the common-pool 
resource. There is a difference in observed aggregate behavior in the two 
levels of endowment (ten and 25 tokens) (Figure 6.1). In the low-endowment 
setting, the aggregate results remain close to the predicted Nash equilibrium. 
In the high endowment setting, however, the aggregate behavior is far from 
the Nash equilibrium during the first part of the experiment, but begins to 
approach Nash in later rounds. More interestingly, at the individual decision 
level, no behavior is found which is consistent with the Nash equilibrium.  

When individuals do not use a decision strategy that yields a Nash 
equilibrium (abbreviated as Nash strategy), the question becomes what 
strategy do they use in deciding how many tokens to invest in which market, 
and to what extend is this strategy biased. Dudley (1993) tested how a player 
should have behaved, given he had perfect foresight, to maximize his/her 
outcomes given the fixed behavior of seven other players. Dudley derived the 
fixed behavior from the other seven players from 27 experiments, including 
216 subjects. The optimal decision behavior of the artificial players has been 
calculated for each of the experiments. The strategies behind this decision 
behavior were categorized as (1) non-cooperative Nash strategy, (2) the 
cooperative strategy, (3) the average strategy that aims at generating the same 
returns in both markets, and (4) the remaining non-classified strategies. In the 
ten-token experiment 24% of the subjects followed a Nash strategy, no player 
followed the cooperative strategy, 12% played the average strategy and 64% 
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of the subjects could not be classified. The results for the 25-token 
experiments were somewhat different. Here, 30% followed a Nash strategy, 
3% a cooperative strategy, 66% played the average strategy, and only 1% 
could not be classified. 
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Figure 6.1a: Outcomes of three laboratory experiments with ten tokens. Nash 
equilibrium generates a yield of 39.5% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1b: Outcomes of three laboratory experiments with 25 tokens. Nash 
equilibrium generates a yield of 39.5% 
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The assumption of perfect foresight is of course not very realistic. 
Therefore Dudley performed experiments equipping the artificial agent with 
forecasts derived from real people. The forecasts were measured in 128 
experiments with real people. Dudley found that in the case of ten-token 
experiments 29% of the subjects follow a Nash strategy, no subjects follow 
the cooperative strategy, 11% follow the average strategy, and 60% of the 
subjects could not be classified. In the case of 25-token experiments 13% 
followed a Nash strategy, 4% a cooperative strategy, 28% an average strategy 
and 34% could not be classified. The hypothesis that the reported forecasts of 
the subjects are unbiased could be rejected on the basis of these results. 
Dudley argued that there is strong evidence supporting that subjects use 
adaptive learning in their forecasts. 

Deadman (1997, 1999) uses intelligent software agents to simulate the 
laboratory outcomes as reported by Ostrom et al. (1994). From the 
perspective of bounded rationality a limited set of rules of thumb have been 
formalized in software agents. These rules are based on questionnaires 
submitted by individual participants during the baseline common-pool 
resource experiments run by Ostrom et al. (1994). The outcomes of the 
questionnaires revealed that many participants followed a rule of thumb that 
stated: ‘Invest more in market two whenever the rate of return is greater than 
$0.05 per token.’ Whenever the per-token rate of return for a market two 
investment exceeded that of market one, participants increased their market 
two investment. When the rate of return fell below that of market one, 
participants invested more tokens in market one. In the ten-token endowment 
experiments, the authors found a tendency for participants to invest all their 
tokens in market two whenever the rate of return exceeded that of market 
one. Many investors followed this strategy, despite the fact that the full 
information allowed the participants to follow a more optimal (Nash) strategy 
(Ostrom et al., 1994). Formalizing such rules of thumb in agents, and 
allowing agents to switch their strategy during the simulation, Deadman was 
able to replicate the cyclic patterns as shown in Figure 6.1. 

However, if we look at the individual data of the players, we may 
conclude that there exists a considerable diversity in how much people invest 
in market two. Figure 6.2 shows some individual harvest patterns of subjects 
in a ten-token experiment (experiment 36 from Ostrom et al., 1994).  
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Figure 6.2: Some exemplary individual data from a ten token experiment 
(data by kind permission of J. Walker) 
 
What can be observed here is that the subject represented by series 2 shows 
large variations in his/her investing. Series 6 on the contrary shows a subject 
that always invests ten tokens. Series 8 shows a subject that continuously 
changes his/her investment in market two, but the changes usually involve 
one token. Apparently the subjects behave quite differently in the same 
experiment, and hence heterogeneity amongst the subjects may play an 
important role in understanding the aggregated data. 

Casari and Plott (2000) suggest that there is heterogeneity among the 
agents regarding how they want to interact with other agents. They 
distinguish altruistic, self-interested and spiteful agents in their analytical 
model. Spiteful agents derive utility from decreasing the earnings of others. 
They replicate the Ostrom et al. (1994) baseline experiments, and added 
additional experiments to test different sanctioning regimes. Their 
experimental data are consistent with their analytical model and they 
conclude that heterogeneity of social orientation explains why a Nash 
equilibrium is not reached. However, Casari and Plott (2000) did not test 
social orientations of the participants directly by surveys. 

In sum, previous studies argue that heterogeneity of strategies among the 
participants is the main cause of the observed aggregate phenomena. 
Especially differences in the way people want to interact with each other are 
assumed to explain the cyclic behavior of the investments in the common-
pool resource. In the next section we discuss in more depth Social Value 
Orientation (SVO) as a formalization of this interaction. 
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6.3 SOCIAL VALUE ORIENTATION (SVO) AND THE 
VALUATION OF OUTCOMES 

 
In the research on social dilemmas, much attention has been given to how the 
Social Value Orientation (SVO) of persons affects their harvesting behavior. 
The SVO of a person is defined as the preferences one has for particular 
distribution of outcomes for oneself and others. Because in common-pool 
resources the choice behavior of people may depend on the preferences they 
have for a certain distribution of outcomes, this perspective may be relevant 
for understanding differences between people regarding their behavior in a 
common-pool resource. 

The SVO can be measured by using a task where people have to make a 
choice between two distributions of outcomes for oneself and the others. 
People are confronted with a series of different choice dilemmas as 
formulated in, for example, The Ring Measure of Social Values (Liebrand, 
1984). Graphically depicting the preferences for outcome preferences on a x-
axis (own outcomes) and y-axis (other outcomes) results in a circumplex of 
SVO (Figure 6.3, see also Wiggins, 1980). In Figure 6.3 the most commonly 
researched prototypical SVOs are being depicted. The SVO of a person can 
be expressed by the angle of the vector, and the length of the vector can 
express the coherence of one’s SVO. A person who makes choices that are 
perfectly consistent with his/her SVO is indicated with a vector that touches 
the outer circle. The less consistent a person is in his choices, the shorter the 
vector gets. In Figure 6.3 some vectors are denoted with grey arrows. 
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For matters of simplicity we will not formalize different vector lengths in our 
model, but rather focus on the most common prototypical SVOs. Whereas in 
principle eight prototypical SVOs can be imagined, the three empirically 
most frequently occurring orientations have been the topic of theorizing and 
empirical study. These three orientations are (1) cooperation, aimed at 
maximizing the outcomes of self and others (2) individualism, aimed at 
maximizing one’s own outcomes at the neglect of the others’ outcomes, and 
(3) competition, aimed at maximizing one’s own outcomes in comparison to 
others’ outcomes. In one experiment Van Lange (1999) reports that the 
prosocial or cooperative is the most frequently observed orientation (57%), 
the individualistic orientation is observed less frequently (36%), and the 
competitive orientation the least frequently observed orientation (7%). Two 
other orientations that have been investigated are (4) altruism, aimed at 
maximizing the others outcomes at the neglect of own outcomes, and (5) 
aggression, which is aimed at minimizing the others’ outcomes at the neglect 
of the own outcomes. An important conclusion from research on SVOs is that 
not all people are a priori inclined to value only their own outcomes, or to 
see the pursuit of self interest as rational (Van Lange et al, 1992, p.17). 
Including the outcomes of others in some way in the outcome matrix leads to 
a transformed outcome matrix, which may lead to other optimal solutions 
than choices on the basis of pure self-interest (Kelley and Thibaut, 1978; 
Kuhlman and Marshello, 1975; McClintock and Liebrand, 1988). The SVO 
people have is thus an important behavior determining factor in social 
dilemmas (Messick and McClintock, 1968; McClintock, 1978). 

This SVO appears to be an important factor in describing heterogeneity 
between people in the management of a common-pool resource. However, 
the SVO of a person does not neatly describe the harvesting behavior of a 
person. For example, a cooperative person is likely to maximize the joint 
outcomes, but when the other players are systematically exploiting him, the 
chances are high that this person abandons a joint maximization strategy, in 
favor of a punishing strategy. Rather we conceive the SVO of a person as a 
factor determining his/her satisfaction level with a certain distribution of 
outcomes. This satisfaction level may affect the decision-making process of 
the person, which may continually change as a consequence of the own and 
other players’ behavior. People may spend more or less cognitive effort in 
their decision making, and may use more or less information regarding the 
behavior of others in this process. First of all this introduces a heterogeneity 
between people, as one person may be inclined more towards extensive 
elaboration than another. On top of that, heterogeneity can also be observed 
within people, as they usually change their decision-making strategy when 
repeatedly making the same type of decision, as is the case in a common-pool 
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resource game. In the next section we therefore provide a psychological 
perspective on human decision making. 
 
 
6.4 DECISION MAKING 
  
People make decisions all the time. During a day you decide for example 
what to eat for breakfast, what alternative route to follow to your work when 
the usual route unexpectedly happens to be closed, what to wear at that 
reception tonight and how to set up this laboratory experiment with 120 
respondents. Because we make thousands of decisions each day, and our 
cognitive capacity is limited, people have developed very smart strategies to 
allocate their limited cognitive capacity over this multitude of decisions. 
Instead of maximizing the outcomes of behavior, as a prototypical Homo 
economicus would do, humans also optimize the decision-making costs 
(cognitive effort) that are associated with making a choice. As such, people 
use an abundance of decision rules or so-called heuristics in their daily lives. 
For example, people may habitually eat cereals for breakfast, follow the 
traffic stream (imitating) when confronted with the closed route, think of 
what other people of the same age will wear at that occasion (norm), and 
contemplate extensively on the advantages and disadvantages of different 
experimental set-ups. This allocation of resource works very efficiently, and 
allows us for example to deliberate about an experiment whilst (almost 
automatically) driving a car. 

The critical question is of course how people decide on which decision 
strategy to employ in a given situation. The work of Simon (1955, 1959, 
1976) on bounded rationality offers a perspective on why habits and 
complying with a norm may be a rational thing to do. The essential argument 
is that humans optimize the full process of decision making (procedural 
rationality), not only the outcomes (substantive rationality) (Simon, 1976). 
This holds that consumers may decide that a certain choice problem is not 
worth investing a lot of cognitive effort in (e.g., deciding on your breakfast), 
whereas another choice problem requires more cognitive attention (e.g., 
setting up an experiment). The less important a decision problem is, the less 
cognitive energy one is willing to invest in the decision, and, hence, the 
simpler the decision heuristic that will be employed.  

Often people use their own previous experiences in a heuristic. For 
example, when you are satisfied with a certain type of cereal for breakfast, 
you may not waste any cognitive energy on deciding what to eat, but rather 
grab for the cereal in an automated way (which may be very convenient early 
in the morning). However, people may also employ the behavior and 
experiences of other people in their decision making. For example, when 
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confronted with an unexpected road obstruction, the car driver may use the 
behavior of the other drivers as a clue regarding which direction to proceed. 
Instead of deliberating about all the possible alternative routes, the driver 
may assume that the predecessors have thought about it, and hence he/she 
may follow without giving too much thought on the issue. Also when 
thinking about which clothes to wear on that occasion, you use the experience 
of other people indirectly. Remembering the negative remarks people made 
on the too-casual outfit of a colleague on a previous similar occasion, you 
may decide to wear a suit, despite your personal preference to wear a more 
casual outfit. It appears that the cognitive strategies that people employ can 
be organized on two dimensions: (1) the amount of cognitive effort that is 
involved, and (2), the individual versus social focus of information gathering.  
 Regarding the first dimension, amount of cognitive effort, the basic idea is 
that people allocate their limited cognitive capacity over various decision 
problems they face so as to maximize their utility. When one is frequently 
being confronted with the same or similar decision tasks and the previous 
behavior yielded satisfactory outcomes, it is a good strategy to economize on 
cognitive effort by using simple heuristics or a habitual script in making the 
decision. This allows for allocating most of the cognitive capacity to decision 
problems that require more attention in order to find a satisfactory solution, 
such as non-routine decisions with important consequences. Because 
cognitive processing takes time, using simple decision heuristics will save 
time. This explains why people tend to use simpler decision heuristics when 
under time pressure (e.g., Smith et al., 1982; Wallsten and Barton, 1982; 
Wright, 1974; Ben Zur and Breznitz, 1981). Also when the decision is less 
important (in terms of consequences) the decision maker may use a simpler 
heuristic instead of using all information available (e.g., Tversky, 1969, 
1972). The simplest type of behavior in terms of cognitive effort refers to 
preconscious habits (Fiske and Taylor, 1991), i.e. behavior which bears a reflex- 
like character. 

Regarding the second dimension, the individual versus social focus of 
information gathering, uncertainty is the key-factor that determines the focus 
of the information search process. When people are certain of themselves, 
they usually refer to their own previous experiences when making a 
deliberate or automated decision. When uncertain, people may use the 
experiences of other people to come to a decision in a cognitive efficient 
manner. Especially the behavior of other people with about similar abilities 
may provide a useful clue in the decision-making process. Simple imitation 
may be an economical way of allocating cognitive capacity to a decision. The 
Social Learning Theory (Bandura, 1977, 1986) states that seeing someone else’s 
behavior being reinforced may affects one’s own behavior. This imitating 
however requires more cognitive effort than a simple habit, because one should 
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be attentive to the behavior of someone else, understand and remember that 
behavior, be able to reproduce that behavior, and experience reinforcement after 
performing the behavior yourself (Bandura, 1977). Following simple norms can 
also be considered as a social focused heuristic that requires relative little 
cognitive effort. However, according to the Theory of Planned Behavior (Ajzen, 
1985, 1988, 1991), the subjective norm, may require more cognitive effort in 
making a decision. The subjective norm here refers to a person’s perception of 
the opinion of others about him/her performing the relevant behavior. The 
subjective norm is proposed as a function of one’s beliefs that referents think 
whether the person should or should not perform the behavior (called the 
injunctive norm), weighted by the motivation to comply with those referents. 
Social comparison (Festinger, 1954) is a key process here, involving the fact that 
people consciously compare their opinions and abilities with those of other 
people. These comparisons follow dimensions such as the possession of material 
goods, financial means, status, principles, attitudes and skills. With respect to 
opinions, people have a drive to roughly conform to others. With respect to 
abilities, people have a drive to be (somewhat) superior to others. Becoming 
aware of a subjective (social) norm would involve an assessment of relevant 
others and an appreciation of their behavioral intentions, which involves 
considerable more cognitive effort than simple imitation or obedience to a simple 
norm. 

In organizing the various decision strategies that people employ, we find it 
instructive to use the two dimensions as graphically depicted in Figure 6.4. 
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Figure 6.4: Different decision processes organized along the dimensions of 
cognitive effort and use of social information. β indicates the maximum level 
of social processing that allows for procedural optimality 
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Figure 6.4 shows that decision strategies that hardly require any cognitive 
effort (reflexes), or require very much cognitive effort (the prototypical 
Homo economicus) do not use social information. Strategies that require an 
intermediate cognitive effort may use both social and non-social information. 
Here, uncertainty is a key factor that determines the degree to which social 
information is being used in the decision-making process. 

In organizing the decision strategies along these two dimensions, a 
perspective emerges regarding how people differ regarding their abilities and 
motivations to invest cognitive effort in a decision, and to what extent they 
use social information. Hence, this perspective contributes to the 
understanding of heterogeneity between people as regards their decision 
making. For example, some people may be more inclined towards using 
social information, and other people may have a larger cognitive ability, 
making it easier to invest cognitive effort in the decision-making process. On 
top of that, understanding how these abilities and motivations may change in 
a repeated decision-making situation provides a perspective on how people 
switch between decision strategies over time, and hence contributes to the 
understanding of heterogeneity within people. For example, when people 
become more uncertain, they will tend to use more social information in their 
decision making, and when people are not satisfied, they may be inclined to 
spend more cognitive effort in their decision-making process as to find a 
better behavioral opportunity. 

To test hypotheses regarding the effects of heterogeneity in the decision- 
making process on collective outcomes we developed the consumat 
approach. This approach involves a multi-agent simulation model of 
decision-making processes. In the next section, we briefly elaborate on the 
consumat approach. 
 
 
6.5 THE CONSUMAT APPROACH 
 
The consumat approach is based on a comprehensive conceptual model of 
choice and decision-making behavior (Jager et al., 1999; Jager, 2000). As 
such it tries to offer a more psychological based meta-theory of human 
decision making than the frequently used ‘rational actor’ approach. The 
consumat approach considers basic human needs and uncertainty as the 
driving factors behind the human decision-making process.  

Based on this conceptual model, a multi-agent simulation model has been 
developed, in which the agents are called ‘consumats’. The driving forces at 
the collective (macro-) and the individual (micro-) level determine the 
environmental setting for consumat behavior. This may be represented by a 
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collective resource. The individual level refers to the consumats: they are 
equipped with needs which may be more or less satisfied, they are confronted 
with opportunities to consume, and they have various abilities to consume 
opportunities. Furthermore, consumats have a certain degree of uncertainty, 
depending on the difference between expected and actual outcomes of their 
behavior. 

The various decision-making processes as organized along the two 
dimensions of Figure 6.4 are reduced to four decision rules: deliberation, 
social comparison, repetition and imitation. This simplification serves to keep 
the simulation model simple, and the results transparent for interpretation. 
Which of these decision rules consumats use at a given moment in time 
depends on their level of need satisfaction and degree of uncertainty. 
Consumats having a low level of need satisfaction and a low degree of 
uncertainty are assumed to deliberate, that is, to determine the consequences 
of all possible decisions given a fixed time-horizon in order to maximize their 
level of need satisfaction. Consumats having a low level of need satisfaction 
and a high degree of uncertainty are assumed to engage in social comparison. 
This implies comparison of own previous behavior with the previous 
behavior of consumats having roughly similar abilities, and selecting that 
behavior which yields a maximal level of need satisfaction. When consumats 
have a high level of need satisfaction, but also a high level of uncertainty, 
they will imitate the behavior of other similar consumats. Finally, consumats 
having a high level of need satisfaction and a low level of uncertainty simply 
repeat their previous behavior. When consumats engage in reasoned behavior 
(deliberation and social comparison) they will update the information in their 
mental map, which serves as a memory to store information on abilities, 
opportunities, and characteristics of other agents. 

After the consumption of opportunities, a new level of need satisfaction 
will be derived, and changes will occur regarding consumats’ abilities, 
opportunities and uncertainty. Moreover, the environment the consumats 
behave in, for example, a collective resource, will change as a consequence 
of their behavior, thereby affecting the behavior in subsequent time steps. 
 
 
6.6  A CONSUMAT MODEL FOR COMMON-POOL 
   RESOURCES 
 
To study how heterogeneity in SVO and decision rules affects the behavior in 
a common-pool resource in a very controlled setting, we decided to formalize 
the consumat approach for the common-pool resource paradigm as sketched 
in the introduction. Three needs are formalized: a personal need, a social 
need and a need for exploration.  
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The personal need relates to subsistence, and is assumed to be equal to 
u(x) the returns from investment. This personal need is equal for all agents 
(NI,i = ui(x)).  

The social need relates to how an agent wants to relate to other people, 
and is a formalization of the SVO, and hence comprises individualistic, 
competitive and cooperative preferences for outcome distributions. The 
agents thus differ regarding their social need.  

When an agent is purely individualistic then the social need satisfaction is 
equal to u(x).  

When an agent is competitive the social need satisfaction takes into 
account the relative returns compared to the average returns. The higher the 
relative returns, the higher the social need satisfaction. 
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The social need satisfaction of a cooperative agent is higher the closer the 
returns come to the cooperative optimum. This cooperative optimum is 
measured in difference with the cooperative amount of tokens, although the 
cooperative amount of returns could also have been used. 
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Besides the personal and social need, we also formalized a need for 

exploration. The exploration need is a combination of understanding, creation 
and freedom needs. Whereas exploration is often described as specific, and 
may relate to, for example, the search for food, Berlyne (1966) also proposed 
a diversify type of exploration, motivated by the need to know. Large 
numbers of experiments by Berlyne and others led to further notions to be 
linked to exploration, such as the novelty of a situation (e.g., Hutt, 1970; see 
also Gibson, 1988). This type of exploration appears to describe how people 
learn to understand how a resource system (the resource and the other 
players) reacts to certain actions. Hence exploration serves to increase the 
understanding of the system. This exploration need is conceived to be less 
satisfied the more stable the outcomes are, because in such a situation nothing 
new is being learned about the system. The exploration need NE,i is being 
formalized as a standard deviation in outcomes over the last n (=5) rounds: 
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where )x(u i is the average return for n rounds. 

When consumats are dissatisfied, they deliberate about all possible courses 
of action. When all three needs are formalized, the investment opportunities 
are evaluated on expected outcomes for the self, the expected outcomes for 
the other and the contribution to the standard deviation in the outcomes. We 
assume that dissatisfaction is not absolute: it is more a rule to decide when to 
employ cognitive energy. Exploration is less important than subsistence, but 
dissatisfaction may lead to the same level of cognitive effort. Stated 
differently, if you don’t have serious problems to think about, you’ll think 
about less serious problems. 

The total need satisfaction is defined as the weighted sum of needs, where 
Σi βi = 1.: 
 

iEiIiSi NNNN ,3,2,1 ⋅+⋅+⋅= βββ       (6.4) 
 

Uncertainty, U, is defined as the standard deviation of the individual 
returns during the last five rounds. 
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The agents are equipped with a memory, which is being used in calculating 
the expected returns from the decisions. In this calculation the agent makes 
use of an expected aggregate level of tokens. To estimate how many tokens 
other agents are expected to invest, a neural network is used. A neural 
network is an algorithm that resembles the way in which the brain works. It is 
composed of nodes representing physiological neurons, and weights, which 
are connections of differing strength between two nodes. Some of the 
neurons receive their input from the environment and some others give back 
their output to the environment. We use a single layer neural network, which 
is a method to describe changes in the weights based on physiological 
principles, and is described by the following equation:  
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where EYt,i is the level of tokens of the other seven agents, yt,k are the inputs 
of the neural network, the observed total investments during the previous ks 
(=3) rounds. Finally, the inputs are weighted by wt,i,k.

A neural network is trained when new information about the input values 
is used to update the weights (w). The widely used Widrow-Hoff delta rule is 
used to train the neural network during the simulation (Mehrotra et al., 1997). 
This simple neural network simply weights the observed token investments 
of the other agents during the last few rounds to estimate the total 
investments in the next round. 
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where δt,i is the difference between the observed values and the expected 
value, and Yt,i is the observed token investments by the other agents. The 
delta rule updates the expectations according to the observed errors. The rate 
of updating depends on the value of η, which is suggested to lie between 0.1 
and 1 (Gallant, 1993). We will assume η to be 0.5 reflecting relative adaptive 
agents. 

In making an investment decision, the agent employs one of the four 
cognitive processes as described in the previous section, depending on the 
(combined) level of need satisfaction and uncertainty and the thresholds Umax 
determining when an agent is uncertain, and Nmin determining when the agent 
is satisfied. When the agent is dissatisfied and certain, it will engage in 
deliberation. Deliberation has been formalized as calculating the level of 
investment that maximizes the agent’s expected need satisfaction. We assume 
that if consumats deliberate they have full information and understanding of 
the problem, and are able to calculate the Nash equilibrium. 

When the agent is satisfied and certain, it will engage in repetition, and 
hence invest the same quantity as in the previous round. When an agent is 
dissatisfied and uncertain, it will engage in social comparison. This implies 
comparing the average investment of the previous round with the own 
investment of the previous round, and choosing that investment with the 
highest expected level of need satisfaction. Finally, when the agent is 
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satisfied and uncertain, it will engage in imitation. This implies copying the 
average investment of the previous round. 

The threshold values for aspiration level (Nmin) and uncertainty tolerance 
(Umax) have an empirical counterpart in the Intellect factor and the Emotional 
Stability factor of the Big five personality structure (Goldberg, 1990, see also 
Janssen and Jager, 2001).  

In the next section we discuss the results of simulation experiments in 
which the agents are confronted with the same common-pool resource as 
used in empirical studies by Ostrom et al. (1994).  
 
 
6.7 RESULTS 
 
In this section we discuss the results for a series of experiments. Tables 6.2 
and 6.3 show statistics of six original laboratory experiments as described in 
Ostrom et al. (1994). The average investments are among the Nash 
equilibrium of eight tokens, although the experiments with 25 tokens are 
systematically above eight tokens. The variability among individual 
investments is higher in the 25-token experiments, showing that there is more 
behavioral change in this condition. Furthermore, variability among rounds is 
generally larger in the 25-token experiments. Furthermore, the higher the 
average investment, the higher the interround variability. These statistics are 
used to compare the simulation experiments with the laboratory experiments. 
 
Table 6.2: Experimental values of three experiments with ten tokens. The first 
column of numbers denotes the average token investment in the common-pool 
resource over 30 rounds. For each round the standard deviation of the eight 
individual investments is calculated. The second column contains the average 
standard deviation over 30 rounds and is a measure of variability within 
each round. The last column shows the total absolute changes in the total 
investments, which is a measure of investment variability among 30 rounds. 
 

 
Experiment 

 
x  

 
)(xstdev  

 
|)(| 1−− txxcum  

1 8.46 1.37 139 
2 7.72 0.60 125 
3 7.94 0.88 137 
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Table 6.3: Experimental values of three experiments with 25 tokens. The first 
column of numbers denotes the average token investment in the common-pool 
resource over 20 rounds. For each round the standard deviation of the eight 
individual investments are calculated. The second column contains the 
average standard deviation over 20 rounds and is a measure of variability 
within each round. The last column shows the total absolute changes in the 
total investments, which is a measure of investment variability among 20 
rounds. 
 

 
Experiment 

 
x  

 
)(xstdev  

 
|)(| 1−− txxcum  

1 8.64 3.36 283 
2 9.22 2.89 316 
3 8.54 2.15 108 

 
Experimenting with cognitive processing, needs and social value 
orientation 
A series of simulation experiments has been performed, and by varying the 
characteristics of the agents we created different conditions. A first 
characteristic we varied was the cognitive processing the agent could employ. 
Two conditions were created, namely the Homo economicus (HE), which 
engages exclusively in deliberation, thereby representing the rational agent 
from standard economic theory, and the Homo psychologicus (HP), which 
could employ all four decision strategies. For the HE conditions the values of 
Nmin and Umax are put on such values that the agents only deliberate. In the HP 
condition, the values of Nmin and Umax are 0.5 and 0.1 respectively, so that all 
four cognitive processes can be used. 

A second characteristic we varied in the experimental design refers to the 
combination of needs the agents have. Four conditions were created, 
respectively; (1) agents with only an personal need (noted with P), (2) agents 
having an personal need and a social need (PS), (3) agents having a personal 
need and an exploration need (PE), and (4) agents having a personal need, a 
social need and an exploration need (PES).  

The third characteristic we varied was the SVO of the eight agents. In the 
conditions where the social need is formalized a fixed number of the agents 
are either cooperative, individualistic or competitive. We analyse all the 
combinations of these three SVOs. 

The initial expectations the agents have regarding the total investments are 
set in line with the equilibrium outcomes of the SVO of the agent. In case of 
a Nash equilibrium (competitive or individualistic SVO) this expectation is 
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set at 64 tokens, and in case of a cooperative equilibrium (cooperative SVO) 
this expectation is set at 36 tokens. 

Table 6.4 summarizes the statistics of the 16 conditions. In ten conditions 
we observe that the theoretical Nash equilibrium (x = 8) is derived, namely in 
the conditions where only the personal need is taken into account (HE-P, HP-
P), or when the social need is weighted but where the agents are all 
competitive or individualistic.  

Inclusion of the need for exploration leads to fluctuations in the token 
investments, which are more extreme in the case of the Homo economicus, 
since the Homo psychologicus can be satisfied with a lower variability.  
 
Table 6.4: Summary of 16 conditions: Simulated values ten tokens, all four 
cognitive strategies and three social value orientations. The average 
standard deviation on between agent variation is not depicted since all 
agents have the same characteristics. 
 

 
Experiment 

 
x  

 
|)(| 1−− txxcum  

HE-P 8 0 
HP-P 8 0 
HE-PS-coop 8.03 448 
HE-PS-ind 8 0 
HE-PS-comp 8 0 
HP-PS-coop 6 0 
HP-PS-ind 8 0 
HP-PS-comp 8 0 
HE-PE 7.93 440 
HP-PE 6.3 344 
HE-PES-coop 8 424 
HE-PES-ind 8 0 
HE-PES-comp 8 0 
HP-PES-coop 6 216 
HP-PES-ind 8 0 
HP-PES-comp 8 0 

 
When we assess all combinations of SVO we have to simplify the 
presentation to keep an overview of how different experimental variations 
affect the results. Therefore we have developed an indicator I that describes 
the difference between the simulation results and the empirical results or 
theoretical expectation.  
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This indicator I is constituted on three relevant outcomes (see Table 6.2 and 
6.3). First, the difference between the simulated average investment behavior 
x and the empirical/theoretical average investment xC is calculated in            
(x – xC)2. The empirical results are the statistics generated by the 24 real 
subjects in the three reported experiments. The theoretical expectation 
reflects the Nash equilibrium of eight tokens for these experiments. The 
second component of the indicator, (stdev - stdevC )2, reflects the difference 
between the variability in each round for the simulation and the 
empirical/theoretical investment. The theoretical (Nash) expectation for 
stdevC is 0, as all subjects are expected always to invest eight tokens. For the 
empirical results we calculate stdevC using the average indicator values of 
Tables 6.2 and 6.3. The third component of the indicator (cum – cumC)2, 
reflects the difference between the variability over the rounds for the 
simulation and the empirical/theoretical investment. Again, the theoretical 
(Nash) expectation of cumC is zero, as all subjects are expected always to 
invest eight tokens. For the empirical results we calculate cumC using the 
average indicator values of Tables 6.2 and 6.3. In this indicator I we defined 
the values of a1, a2 and a3 in such a way that the indicator remained between 
0 and 1.  

In the following we present the results for a series of experiments. 
Graphically we present the value of I as a bar. Each bar represents the 
difference between the statistics of a simulation run and the theoretical 
expectation (upper, Nash equilibrium) or empirical observations (lower). In 
the left figures the artificial agents make decisions in line with the Homo 
economicus (HE), while in the figures on the right, the artificial agents make 
decisions in line with the Homo psychologicus (HP). The axes represent the 
number of individuals and the number of competitors. The number of 
cooperative agents is equal to eight minus the agents with individualistic or 
competitive SVO. In Figure 6.5 we present the results for agents having only 
a need for personal returns and the need for identity. 
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Figure 6.5: Results of all combinations of SVO of experiments with ten tokens 
with artificial agents without the need for exploration 
 
It can be observed that in the conditions without cooperative agents (on the 
diagonal line), the theoretical outcomes can be reproduced in both the HE and 
the HP conditions. When agents act according to the HP, the results in most 
combinations do not differ much from the theoretical outcome. For the HE 
we observe that the inclusion of cooperatives causes a large difference with 
the theoretical outcomes. Only when the number of cooperatives is about four 
can we see a valley in the results, indicating that the results are closer to the 
theoretical outcomes. This valley is caused by oscillations that are less 
extreme than when fewer cooperators take part. Compared with the observed 
statistics, the HP clearly performs better than HE. It can be seen that more 
cooperative agents lead towards a better match with the empirical data. 

Figure 6.6 shows the results for the same experiments, only now including 
the need for exploration. The ‘valley’ in the HP-empirical data figure shows 
that for the HP the observed statistics can be reproduced closely when about 
four cooperative agents (close to the proportion of cooperatives as identified 
by Van Lange, 1999) have been formalized. However, for most combinations 
of SVO the results are still more close to the theoretical expectations than to 
the empirical data. 
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Figure 6.6: Results of all combinations of SVO of experiments with artificial 
agents with ten tokens, with equal weighting of needs  
 
Experimenting with heterogeneity of needs 
In the next series of experiments the agents differ with respect to the 
weighting of their needs, thereby adding an extra source of heterogeneity 
between the agents. The values of βi are drawn from a random distribution. 
Still the sum of βi’s is equal to one. The procedure of generating the β’s is as 
follows. For each agent the value of β is randomly drawn between 0 and 1, 
but then divided by the sum of β1, β2 and β3. For each combination of SVO, 
we performed 1000 runs and calculated the average value of the indicators. 

The results of these experiments are shown in Figure 6.7. Whereas in the 
previous experiments the agents performed better in matching the theoretical 
expectations than the empirical data, here we observe the opposite. However, 
this match on empirical data is less close than for the HP with about four 
cooperatives in the previous experiment. Remarkable is that the HP now have 
the best performance when there are only competitive agents. This is mainly 
due to its good fit on the second component of I that measures the difference 
between the variability in each round. The theoretical outcomes are now 
better reproduced when agents have an individualistic SVO, which reduces 
the variability of the decisions. 
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Figure 6.7: Results of all combinations of SVO of experiments with artificial 
agents with ten tokens, with heterogeneous weighting of needs  
 
The same experiments with heterogeneous weighting of the needs as 
performed for the ten-token case are repeated for the 25-token case (Figure 
6.8). For the HP, the results match the closest to the empirical data when 
there are only competitors. When there are less competitors, the results match 
quite well for as long as there is a balance between the number of 
individualists and cooperatives, as can be seen in the ‘valley’. The theoretical 
prediction can be replicated the best when agents are individualistic and 
agents perform like the HE.  

These computational experiments show that we are not able to replicate 
the observations perfectly, but that with different assumptions different types 
of agent formulations are more suitable to approximate the statistics of the 
observations. Remarkable is the influence of heterogeneity among the 
weighting of the needs. If we do not assume heterogeneity, groups that 
include cooperative agents are better able to approximate the statistics of the 
observations, while inclusion of heterogeneity leads to the result that no 
cooperators should be in the group in the attempt to replicate the statistics of 
the observations. What is clear is that all three needs are of importance to 
understand the observations, and that agents conforming to the Homo 
psychologicus have a better performance than the Homo economicus in 
approximating the empirical data. 
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Figure 6.8: Results of all combinations of SVO of experiments with artificial 
agents with 25 tokens, with heterogeneous weighting of needs  
 
 
6.8 DISCUSSION AND CONCLUSIONS 
 
In this series of experiments we demonstrated how agents can be equipped 
with decision rules that are based on psychological theory, and experimented 
with different settings of these rules as to mimic the individual behavior of 
real people acting in a resource dilemma. We showed that mimicking the 
behavior of real people on an individual level requires more psychological 
realism in the agents than mimicking the aggregate outcomes as in previous 
experiments. However, we realize that the reproduction of statistics that fit 
with a limited set of empirical observations does not provide sufficient proof 
that the simulation model captures the most relevant dynamics that guide the 
behavior of the subjects in the Ostrom et al. (1994) experiments. To do so 
would require more empirical data. Hence we argue that more experiments 
are required to unravel the decision-making process of real people. These 
experiments should address the factors underlying the heterogeneity of 
decision making. In this chapter, we identified several factors that may 
contribute to this heterogeneity in decision making. We distinguished the 
different needs that play a role in the decision-making process, the relative 
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importance of these needs, the SVO of the decision maker, the cognitive 
process that people employ when making a decision, the personality 
characteristics that determine the tendency to use certain cognitive processes 
more often than others (Intellect, Emotional Stability) and the time-horizon 
that is taken into account when making a decision. To test all these factors 
simultaneously in experimental research would yield an enormous task, both 
for the experimenter and the subjects. This task is especially difficult because 
we are dealing with complex behavioral dynamics, as different people having 
different (changing) values on the different factors are interacting for 20 
time-steps. Therefore it would be practical if we could test beforehand the 
relevance of factors and develop hypothesizes concerning the effects of 
varying these factors. We argue that simulation research provides a tool 
capable of doing so. By performing many experiments and conducting 
sensitivity analysis one may identify the conditions under which certain 
behavioral dynamics are more likely to happen, and which factors play a 
crucial role. Following that, hypothesis and a research design can be 
formulated for testing these specific effects in empirical experiments.  

We claim that it would be most efficient to combine simulation research 
and empirical research as described above to harvest synergetic benefits. For 
example, our simulation experiments suggest that the cognitive processes a 
person is most likely to use may be very important in his/her harvesting 
behavior. Someone having a low aspiration level is more likely to develop a 
habit, whereas someone that has a low uncertainty tolerance is more likely to 
engage in imitation and social comparison. Field experiments could be 
focused on the question how personality characteristics (aspiration level and 
uncertainty tolerance) of people are related to their cognitive processing and 
behavior. The data obtained in this empirical research can subsequently be 
used to formalize the relation between personality and cognitive processing 
more validly in agent rules. However, until now experimental and simulation 
research are rather distinct, despite the fact that they more and more deal with 
similar research questions. Only three studies are known to the authors that 
use multi-agent models to formulate hypotheses which are tested with real 
agents (Duffy, 2001; Pingle and Tesfatsion, 2001; Tobias, in preparation). 
We think that both multi-agent modeling as well as experimental research can 
benefit from more interaction between both fields. Whereas both fields 
appear to be concentrated around the research methodology that is being 
used, a focus on the research question would benefit this interaction. As a 
start we discuss five hypotheses based on our computational model, and 
formulate tests for the experimental research. 
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Hypotheses: 
 
1. Groups of people having a high aspiration level and a high tolerance for 

uncertainty are more likely to engage in deliberation. As a consequence 
they are less sensitive to the imitation effect. This would result in fewer 
fluctuations in investment decision between agents and between 
rounds. 

2. Groups of people that systematically differ as regards their distribution 
of SVO also systematically differ as regards their investment levels. 
We expect that homogeneous groups of cooperatives invest less in 
market two than relative homogeneous groups of individualists and 
competitors. Experiments would require a (unobtrusive) pre-
measurement of SVO, which will be used to allocate subjects later to 
experimental settings. 

3. Displaying only aggregate outcomes will inhibit the social need in the 
subjects’ decision making, and hence will moderate the SVO effect in 
comparison to conditions where individual outcome levels are 
displayed.  

4. Giving the subjects a fee for participating in the experiment on the 
basis of their returns would increase the weighing of the personal need, 
whereas providing a standard fee for participation would inhibit the 
importance of the personal need in the decision-making process. 

5. Allowing the subjects to explore issues that are not directly relevant for 
the experiment (e.g., particular information on the other players) would 
decrease the influence of the exploration need on the harvesting 
behavior, and hence the results will show less variance. 

 
To be able to compare simulation results involving cognitive processes with 
experimental data, it would be practical to measure the cognitive process in 
an experimental setting. The approach of Hine and Gifford (1996) 
demonstrates that it is possible and necessary to ask people about their 
decision-making strategies. However, a more structural approach of 
measuring cognitive processing is proposed by registering the quantity and 
type of information subjects retrieve from a matrix board (on screen) before 
making an investment decision. The decision-making process can be tracked 
by registering the quantity and type of information subjects retrieve from a 
matrix board (on screen) before making a harvesting decision. The 
information that can be retrieved relates to the state of the resource and the 
harvesting behavior of other people (aggregated or individual). Measuring 
information retrieval in real time allows for discrimination between habitual 
harvesting and deliberate stable harvesting. A possible avenue for further 
research on cognitive processes is to use MRI-scan data obtained during the 
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decision-making task of the subjects. First experiments in which MRI scans 
are conducted in a cooperation game are conducted by McCabe et al. (2001) 
and show a relation between pre-frontal brain activity and promoting 
cooperative behavior in the other player.  

Several other factors that have been identified as potentially influential in 
simulation research can be measured in empirical experiments. Moreover, 
many experiments can be performed in which subjects are being grouped 
together according to their scores on relevant factors. For example, to test 
hypothesis 2 we would have to obtain SVO data before assembling subject 
groups. The more clearly experimental research shows how a certain factor 
affects the behavior of real people, the better it is to formalize this factor into 
a valid way in a simulation model. This would give more insight in the 
dynamics behind the investment behavior and give rise to refining the 
hypothesis on relevant behavioral processes. We are convinced that the 
combination of different research tools to address the same research question 
is a promising way to get a better understanding of the very basic behavioral 
dynamics that determine our use of collective resources. 
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