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Abstract - This paper discusses the evolution of rules
between people for the management of ecosystems. Four aspects
of the rules are discussed: coding, creation, selection and
memory. The immune system provides us a useful metaphor to
relate these four aspects into a coherent framework. We sketch a
framework for a computational model to study the evolution of
rules for the management of ecosystems.

INTRODUCTION

In the emerging field of immunocomputing, also known as
artificial immune systems, computer scientists apply system
characteristics of immune systems to other fields such as
computer security and pattern recognition [4, 9]. In this paper
we focus on a different use of immunocomputing – as a
metaphor for the evolution of rules between people. We focus
on a particular type of interaction between people, namely the
management of common-pool resources. Common-pool
resources are characterised by the fact that it is costly to
exclude individuals from using the resource, and the fact that
the benefits consumed by one individual subtract from those
available to others. Common-pool resources can be found in
many problem areas, but we mainly refer to ecosystem
management problems, such as the management of fish
stocks, forests and ground water reservoirs.

How to manage common-pool resources has been a topic
of interest for many scholars. The so-called commons
dilemma was made famous by [6] as “the tragedy of the
commons”. The traditional view is that when there is no
regulation, individuals can ignore the costs their decisions
impose on others. This leads to over-exploitation of the
common resource. A cooperative action would allow more
efficient use of the resource, but cannot be derived without
central control or privatisation of the resource.

However, empirical evidence from field research and
laboratory experiments does not support this view [23]. There
are many examples where people dependent upon common-
pool resources have organised themselves to achieve much
higher outcomes than is predicted by the conventional theory
[21]. Laboratory experiments show that communication is a
crucial factor to derive cooperative behaviour. Furthermore,
the ability of the participants to determine their own
monitoring and sanctioning system is critical for sustaining
cooperative behaviour [23]. However, the evidence for self-
organisation of institutions is anecdotal. No formal
explanation for it exists. Our goal is to develop such a formal
model, based on models of the immune system.

Institutions can be considered as rules that shape human
interactions. To understand self-organisation of institutions
we have to understand the evolution of rules. This is different

from the evolution of most organisms. The fitness of most
organisms is related to the number of offspring. The fitness of
a rule depends on whether it is used within a population of
agents, which might be related to its functionality. An
immune system seems to be a more suitable metaphor since it
contains a large variety of effective responses to pathogens,
creates new responses and remembers successful responses.
The success of a response, like the success of a rule, is related
to its functionality.

In this paper we discuss an immunocomputational
framework to study the evolution of rules. We are especially
interested in how rules are encoded, how new rules are
created, how effective rules get selected and how rules are
remembered. We discuss the immune system perspective of
ecosystem management in more detail in [12] and [14].

THE IMMUNE SYSTEM

The immune system maintains the health of the body by
protecting it from invasion by harmful pathogens, such as
bacteria, viruses, fungi, and parasites. These pathogens are
the cause of many diseases, so it is necessary to detect and
eliminate them rapidly. The immune system also remembers
successful responses to invasions and can re-use these
responses if similar pathogens invade in the future. For the
purposes of this paper, we will mainly discuss the coding,
creation, selection and memory of immune system responses.
Our discussion is based on the descriptions of [27] and [8].

The adaptive part of the immune system consists of a
class of white blood cells called lymphocytes, whose function
is to detect pathogens and assist in their elimination. The
surface of a lymphocyte is covered with a large number of
identical receptors. On the surfaces of pathogens are epitopes.
The more complementary the structures of receptor and
epitope are, the more likely they will bind together.
Recognition occurs when the number of bound receptors on a
lymphocyte’s surface exceeds a certain threshold.

The immune system must maintain a diverse repertoire of
responses because different pathogens must be eliminated in
different ways. To achieve this, the immune system
constantly creates new types of responses. These are subject
to selection processes that favour more successful responses
and ensure that the immune system does not respond to self-
proteins. A memory of successful responses to pathogens is
maintained to speed up future responses to those and similar
pathogens.

The generation of new responses is done by a pseudo-
random process of DNA recombination. The DNA used to
create lymphocyte receptors consists of a number of libraries,
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each containing a number of gene segments. A new DNA
string is assembled by picking a random segment from each
library and joining these segments together. The resulting
DNA is then used to make the receptor. If the DNA does not
make a valid receptor the lymphocyte commits suicide,
because it is useless without a receptor.

Lymphocytes are subject to two types of selection
process. Negative selection, which operates on lymphocytes
maturing in the thymus (called T-cells), ensures that these
lymphocytes do not respond to self-proteins. This is achieved
by killing any T-cell that binds to a self protein while it is
maturing. The second selection process, called clonal
selection, operates on lymphocytes that have matured in the
bone marrow (called B-cells). Any B-cell that binds to a
pathogen is stimulated to copy itself. Thus, B-cells are
selected for their success in detecting non-self. The copying
process is subject to a high probability of errors
(“hypermutation”). The combination of copying with
mutation and selection amounts to an evolutionary algorithm
that gives rise to B-cells that are increasingly specific to the
invading pathogen.

During the first response to a new pathogen the immune
system learns to recognise it by generating new responses and
selecting those that are successful, as described above. This
response is slow and the organism will experience an
infection. If the same or similar pathogens invade in the
future the immune system will respond much more quickly
because it maintains a memory of successful responses from
previous infections.

There are several theories of how immune memory is
maintained. One is that successful B-cells become long-lived
memory cells that remain in the body in a dormant state until
re-infection occurs. Another is that memory cells are not
long-lived, but the immune system is constantly being
stimulated by low levels of persistent pathogens, either left
over from the infection or from subsequent invasions. This
ensures that memory cells continue to produce descendants
that can deal with future infections. Yet another theory is
based on evidence that lymphocytes bind to each other as
well as to pathogens. These cells can be described as a
network, which dynamically maintains memory using
feedback mechanisms [15]. If something has been learnt, it
will be remembered if it continues to be reinforced by other
parts of the network.

In the following four sections we discuss the coding,
creation, selection, and memory of rules in social ecological
systems, and the similarities and differences between rules
and immune system receptors.

CODING OF RULES

To understand the emergence of rules, we must understand
how rules are encoded. The creation of novel structures in
any domain always takes place within the constraints of a
generative system [2]. For example, English grammar and
vocabulary is the generative system used for creating novel
English sentences. We need a genetic structure of rules, just

as DNA is the genetic structure used to generate new
responses in the immune system. A useful starting point may
be the grammar of institutions described in [3]. This grammar
provides a framework to generate structural descriptions of
institutional statements using a syntax of five components.

Comparing the proposed grammar of institutions with the
encoding of lymphocyte receptors, we see that there are some
interesting similarities. The overall structure of both can be
described as a string of slots, into each of which are fitted
components of a certain type. In both cases, each type of
component is drawn from a library of possible variations and
the number of variations to choose from varies between the
different types of component.

CREATION OF RULES

Some researchers studying human creativity have found the
notion of conceptual spaces useful [2, 24]. The dimensions of
a conceptual space are defined by the generative system
underlying the domain of interest. The grammar of
institutions, combined with a mechanism for generating new
institutions from it, defines a conceptual space containing the
institutions that conform to the grammar. Exploration of this
space creates novel rules that can enter the selection phase.

Generation of new responses in the immune system is by
random recombination of the genetic material. Each
combination is tested for validity – if it produces a valid
receptor then the lymphocyte can enter the selection process.
Similarly, an institutional statement may be invalid in a
number of ways. Vital components may be missing, an
individual component may contain an impossible or
inconsistent value, or two or more components may be
inconsistent with each other. At some point in the creation of
a new rule there must be a test of its validity.

There are some significant differences between the ways
new lymphocyte receptors and new institutional statements
are created. Creating new rules at random seems like a costly
process. The immune system can afford to do this because it
contains so many millions of cells. Social groups do not
contain as many agents as this or maintain such a large set of
rules. However, people can reduce costs by ignoring vast
areas of the space of possible rules.

Similar points are made in [24]. Evolution searches the
conceptual space blindly – it cannot manage its search, it
simply happens. Evolution’s (and the immune system’s) main
weapons are time and parallel search. Human inventors do
not have the time to search blindly through the possibilities,
nor do they have the same capacity for parallel search that
evolution has. Instead they are able to manage their search by
following gradients of promise, ignoring large areas that are
not cost-effective to search, changing the grain of the search,
and shifting their starting point to a different area of the
space.

Another problem with random recombination is that it
cannot create completely novel components, only new
arrangements of existing components. In the creation of
institutional statements we may sometimes want to create
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new components and add them to those available for
recombination.

SELECTION OF RULES

Before proposed rules become effective, that is, before
becoming a social norm or a law, a selection process tests the
rules. Within an immune system lymphocytes are subject to
selection processes that favour more successful responses and
ensure that the immune system does not respond to self-
proteins. In an immune system, recognition occurs when the
number of bound receptors on a lymphocyte’s surface
exceeds a certain threshold. In a social system, a rule may
become effective when enough agents start to use the rule, or
when enough votes are collected for a collective-choice.

The question regarding the selection of rules is whether
enough support can be derived for a new rule. The ability of a
group to support a new proposed rule can be considered to be
dependent on social capital. Social capital comprises relations
of trust, reciprocity, common rules, norms and sanctions, and
connectedness in institutions [25].

Trust can be defined as the belief in reciprocity of another
agent. A trustor will provide something of value to the
trustee, but will expect something back later. A crucial
element of trust is to recognise trustworthiness of others. In
small groups one may know the reputations of all other
agents. In larger groups one may use symbols to signal
trustworthiness, such as membership of certain organisations,
a university degree, or a uniform.

The existence of norms in a group that place group
interests above those of individuals give individuals the
confidence to invest in collective activities, knowing that
others will do so too. Reciprocity and trust are important
social norms which can be developed in a group [22].
Another important norm is to agree on sanctions for those
who break the rules. Social norms can be developed during
repeated interactions, but can decay easily by cheating.

Social capital reduces the costs of cooperation. Collective
choice rules will only be selected when there is a sufficient
level of social capital. In a population of distrust, selfishness
and individualism, cooperative arrangements are unlikely to
emerge and rules will not be selected.

REMEMBERING RULES

The memory of a society can take many different forms.
These may be formal, such as laws and constitutions, or
informal, such as taboos, rituals and religions. A useful
starting point for looking at memory is the discussion of
Traditional Ecological Knowledge in [1], which identifies a
wide range of ecosystem management practices found in
local and traditional societies and discusses the social
mechanisms behind these practices. These include
mechanisms for the generation, accumulation, and
transmission of knowledge, the structure and dynamics of the
institutions in which ecological knowledge is embedded, and
mechanisms for cultural internalisation. Many of these

mechanisms are relevant to the question of memory. Some –
such as taboos, regulations, social and religious sanctions and
folklore – can probably best be viewed as specific items (or
collections of items) of memory. Others – the role of
knowledge carriers, stewards, or wise people – emphasise the
locations where memory is held. Finally, there are the
processes that maintain memory – the transmission of
knowledge between generations, community assessments of
available resources, and rituals or ceremonies that serve as
mechanisms for cultural internalisation.

We are interested in whether any of the mechanisms for
maintaining social memory are similar to mechanisms in the
immune system. In our overview of the immune system we
presented three theories of how immune memory is
maintained: long-lived memory cells, re-stimulation by
pathogens, and immune networks.

Memory cells are analogous to individual items of
memory, such as individual laws and taboos. An individual
rule will become an item of memory if it is successful
enough. This analogy is somewhat unsatisfactory because it
does not take account of the processes involved in
maintaining memory. If rules are not written down then they
must be stored in people, and they must be able to survive the
deaths of the people carrying them. Therefore the processes
that transmit memory between people are crucial for the
survival of rules that are not written down.

Another possible analogy to the memory cell theory is the
revival of old knowledge and management practices in
response to a resource crisis. A few examples of such revivals
are given in [1]. Like memory cells, the knowledge being
revived has lain dormant for a while before being reactivated
in response to a disturbance. However, strong institutions and
traditions are necessary for such revivals [1]. If these are not
present economic incentives may be necessary. By contrast,
memory cells respond to pathogens they recognise
automatically, so the memory cell theory may not be able to
say much about the circumstances that are necessary for the
revival of dormant knowledge.

The theory that memory is maintained by continual re-
stimulation of memory cells is more promising. In this
theory, cells are short-lived and it is the descendants of the
original memory cells that respond to future infections. This
is similar to the process of intergenerational transmission,
which ensures that memory can survive the deaths of the
individuals that store it. In the immune system, memory is
transmitted between generations as long as the memory cells
are re-stimulated – i.e. as long as the information is relevant.
Similarly, cultural change or persistence of memory depends
on its continued relevance to the current context [20]. What
this theory of memory cannot explain is the survival of
memory that is no longer relevant.

The immune network is analogous to memory that is
produced and maintained by a social network, which in effect
covers almost all of the types of memory we are interested in.
No single item of memory exists in isolation from other
items, nor does any location or person holding items of
memory exist in isolation from other locations or people.
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Furthermore, all of the processes that change and maintain
memory take place in the context of a social network.

Immune networks could also be used to model networks
of rules. When rules are created there is always a possibility
that they conflict with pre-existing rules in some way. In an
immune network, something is remembered if it continues to
be reinforced by feedback from other parts of the network. If
there is conflict between a rule and other parts of the network
then the support that this rule receives will be weaker,
making it more likely to be forgotten. An immune network
model may help us to determine under what circumstances a
new rule will be successfully integrated into a system of pre-
existing rules.

COMPUTATIONAL MODELS OF IMMUNE SYSTEMS

As discussed above, and in more detail in [14], the evolution
of rules within a social-ecological system has interesting
similarities with immune systems. In this section we will
provide an overview of the relevant formal models in
theoretical immunology and immunocomputing that may be
useful for understanding the evolution of rules.

Coding and creation
Many of the models of Artificial Immune Systems use a
binary string encoding for antibody receptors and antigens [7,
9]. The reason for using such a representation is that it is easy
to understand and analyse. It is also easy to define a simple
matching rule to calculate the binding strength between
receptor and antigen [9]. An alternative would be a variable-
based symbolic representation, as suggested in [11]. This
allows the use of concepts from logic such as and, or, if-then-
else, etc. However, it may prove difficult to use.

There is a possible compromise between these two
solutions, suggested by [17], in which the genotypes are
binary strings and the phenotypes are rules written in a simple
logic. Because the matching is done between rules and
antigens, rather than binary strings and antigens, concepts
from logic can be used. However, evolution acts on binary
genotypes, which are generally simpler to evolve than logic
expressions. It is also possible to define sophisticated
mutation operators that can make rules more specific or more
general [17], which would not be possible if the phenotype
was a binary string.

Probably the simplest and most useful model of the
creation of lymphocyte receptors is that of [7]. In this model,
lymphocyte receptors and antigens are represented as 64-bit
binary strings. The gene libraries used to construct the
receptors consist of four libraries, each containing eight 16-
bit segments. To construct a receptor, a segment is chosen at
random from each library and these segments are joined
together. When a genetic algorithm was used to study the
effects of evolution on the libraries, they tended to self-
organise so as to provide the best possible coverage of
antigen space (and therefore high fitness scores).

Selection
The immune system implements two types of selection –
negative selection and clonal selection. These two processes
have tended to be dealt with separately by researchers in
computer science, with negative selection being used mainly
in the field of computer security [9], and clonal selection
being used for machine learning [5].

The negative selection algorithm used by [9] consists of
randomly generating detectors and then exposing these to
self-patterns. If a detector matches one of these patterns while
it is maturing it is killed. This closely resembles negative
selection of T-cells in the thymus. When detectors are mature
they can monitor a computer or network of computers for
unusual activity (non-self patterns) and are unlikely to
respond to normal activity (self patterns) because the negative
selection process ensures they are tolerant of it.

Some computer security researchers have recognised the
potential of clonal selection as a learning process to enhance
the negative selection algorithm. For example [17] presents a
clonal selection algorithm that uses a negative selection
operator to ensure that the evolved detectors do not match
self-patterns. This algorithm was applied to machine learning
problems, evolving detector sets which achieved a high rate
of detection of non-self while minimising detection of self.
The best results were achieved when the evolved detector set
contained a good balance of general and specific detectors.
The general detectors can efficiently detect a large number of
related antigens while the specific detectors can detect more
unusual cases not covered by the general detectors.

Another model of clonal selection which has been applied
to complex machine learning tasks is presented in [5]. At
each iteration the model selects the best individuals in the
population, based on their affinity to the antigen, and clones
them with mutation. A certain number of low affinity
individuals are also replaced in each iteration. Clonal
selection is essentially a Darwinian evolutionary process, but
there is an interesting difference between clonal selection and
genetic algorithms. Whereas genetic algorithms tend to
converge on a global optimum solution, the clonal selection
algorithm evolves many local optima solutions [5, 11]. This
is partly because clonal selection places more emphasis on
the generation of diversity, both in the creation of new
lymphocytes and in the relatively high rate of mutation.
Another reason is that the immune system’s memory can hold
the diversity of responses that have been generated while
responses to new disturbances are being evolved. This ability
to generate and maintain a diversity of responses to different
disturbances is one of the reasons why models of the immune
system are an appealing analogy for the evolution of rules.

Memory
Artificial immune systems often seem to model memory in
the simplest way possible, using long-lived memory cells. For
example, in [9], successful detectors (those that match a
certain number of non-self patterns) become memory
detectors with a greatly increased life span. These memory
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detectors also need less stimulation to be activated, speeding
up the secondary response to a previously seen antigen.

The immune network has also received much attention
from computer scientists. A model of the immune network is
used to solve machine learning problems in [11]. In this
model the stimulation level of a B-cell is affected by its
affinity to other B-cells in the network as well as its affinity
to the antigen. Each antigen is presented to the network in a
random location and a certain percentage of the B-cells local
to this point is selected to respond to it. The worst 5% of
these B-cells are killed and replaced by newly created B-
cells. New cells can also be created when a B-cell binds to an
antigen. When a new cell is placed in the network it is linked
to the two B-cells to which it has the greatest affinity,
resulting in the emergence of regions containing similar B-
cells.

The memory of this system is maintained because cells
that hold the memory of a particular antigen are continually
stimulated by other cells in the network. Because B-cells are
continually being deleted and replaced, the system as a whole
can adapt to a changing environment by forgetting little used
items of information. This will only occur when the cells
holding these items lose the feedback from other parts of the
network, so the system is not too quick to forget information
when it is disturbed.

This model has an interesting advantage over neural
network models [11]. Neural networks represent what they
have learnt in a way that is very difficult to analyse, whereas
the immune network represents what it has learnt explicitly –
each cell is a representation of a learnt response to an antigen
– making analysis of the results much easier.

A COMPUTATIONAL FRAMEWORK FOR THE
EVOLUTION OF RULES IN A SOCIAL ECOLOGICAL

SYSTEM

We will now sketch a possible framework to simulate the
evolution of rules in a social ecological system. When it is
disturbed, a well functioning system should be able to
generate new rules that are effective to prevent severe
consequences. For example, when a new management
practise leads to over-harvesting, a healthy social ecological
system should detect the problem in an early phase, create
informal or formal rules to reduce the harvesting, and be alert
for similar problems in the future.

Coding and creation of rules
The rules can be encoded as a bit-string using a similar
encoding scheme to that suggested by [17]. The string might
consist of parts that are created in different libraries in line
with the different components of the grammar of institutions
[3]. The first priority for future research is to try to develop
the encoding scheme of [17] into one which can represent all
of the possible institutions that the grammar can.

Creation consists of selective drawing from the space of
possible rules. This means that probabilities for a new rule
are not uniform. Due to experience and setting priorities,

some rules might have a larger probability of being created.
This process can be simulated by neural networks, hill
climbing or genetic algorithms.

The coding of rules should be consistent. This means that
rules can only be successfully created when the coding of a
rule meets certain exogenous constraints of consistency. Such
constraints can be absolute such as physical constraints, or
can change in time, for example related to social norms.

Social capital
To derive sufficient amount of support for a new rule, it is
important to build up enough social capital for a timely
response. The question is how to formalise the elements of
social capital and their dynamics.

Agents are assumed to be part of social networks, which
formalise social interactions. Such social networks can be
static, like small-world networks [29], or they can be the
result of social interactions [16, 26]. In the latter case, agents
start to have random interactions, but previous contacts
reinforce social interactions. Furthermore, probabilities of
social interactions can be related to the social structure of the
network. For example, you may have a larger probability of
meeting a friend of a friend, than a random other person.

Another aspect that can restrict social connectivity is the
mutual trust between agents. How do agents recognise
trustworthy others? One approach is to rely on the reputations
of players. In [19], for example, agents keep track of image
scores of individuals, where the image scores represent the
degree of cooperative actions of the agent in the past. So,
when an agent meets another agent, it derives information
about its past performance of cooperation. This information is
used by the agent to decide whether to cooperate or not. A
drawback of such an image score is the assumption of perfect
knowledge.

An alternative approach is the use of signals. Within the
area of understanding the evolution of cooperation, the use of
signals refers to models of “tagging” that have been used to
explore behaviour in the iterated Prisoner’s Dilemma. Agents
are able to “recognise” one another via an observable symbol,
a tag, and based on this observed signal the agent may decide
whether or not to interact. The use of tags for the study of
social interactions was suggested by [10]. In [28] agents
recognise one another and base refusals to play in a
Prisoner’s Dilemma on past experience. In [18] agents are not
identified from previous interactions, but instead it is
assumed that symbols signal trustworthiness, such that they
provide information about agents with whom no previous
contacts have been experienced. Similarly, in [13] genetic
and cultural symbols are used as ways to signal
trustworthiness, where specific cultural symbols can be
agreed on during interactions among the agents.

The recognition of trustworthy and untrustworthy agents
could be likened to the recognition of self and non-self in the
immune system. However, unlike in the immune system,
recognition of an untrustworthy (non-self) agent does not
result in destruction of the agent, but in avoidance of
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cooperative activities with that agent, because of the risk of
getting defection as a response.

Memory
Memory of rules can be embedded in individuals like
memory cells, or can be embedded in social networks like
immune networks. When memory is stored in an individual,
this individual receives the code of the rule and knows when
to use the rule. When memory is stored within a social
network, the interactions between the agents generate the
code of the rule and the conditions in which to apply the rule.
In both cases memory is limited, and needs to be maintained
actively. This occurs by re-stimulation of the memory. When
a problem occurs repetitively the memory storage is
reinforced frequently. In case a situation happens only rarely,
but can have severe consequences, it can be worthwhile to
put energy in training the memory. This can be done by
external stimulation such as celebration days, monuments,
rituals, and taboos.

CONCLUSION

In this paper we have described an immunocomputational
framework for the evolution of rules for ecosystem
management. The next phase will be the development of
computational models. But what can such models contribute
to the understanding of institutions for environmental
management? One of the possible topics of research is to
understand in which situations what types of clusters of rules
emerge. Do differences in ecosystem dynamics lead to
different types of rules emerging?

We are entering a rather unexplored and exiting area of
research. The anecdotal evidence that self-governance of
common-pool resources is possible might be studied by
formal approaches based on artificial immune systems.
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